精英家教网 > 高中数学 > 题目详情

已知一个二次函数的对称轴为x=2,它的图象经过点(2,3),且与某一次函数的图象交于点(0,-1),那么已知的二次函数的解析式是


  1. A.
    f(x)=-x2-4x-1
  2. B.
    f(x)=-x2+4x+1
  3. C.
    f(x)=-x2+4x-1
  4. D.
    f(x)=x2-4x+1
C
解:设f(x)=a(x-2)2+3,将x=0,y=-1代入解得a=-1,
∴f(x)=-x2+4x-1,选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:二次函数f(x)=ax2+bx+c同时满足条件:①f(3-x)=f(x);②f(1)=0;③对任意实数x,f(x)≥
1
4a
-
1
2
恒成立.
(1)求y=f(x)的表达式;
(2)数列{an},{bn},若对任意n均存在一个函数gn(x),使得对任意的非零实数x都满足gn(x)•f(x)+anx+bn=xn+1,(n∈N*),求:数列{an}与{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1,c=
12
时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2-2km+1+b+ac≥0对所有k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年北京四中理) (14分)已知:二次函数满足条件:①

③对任意实数恒成立.

   (1)求:的表达式;

   (2)数列,若对任意的实数x都满足

是定义在实数集R上的一个函数.

求:数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:二次函数f(x)=ax2+bx+c同时满足条件:①f(3-x)=f(x);②f(1)=0;③对任意实数数学公式恒成立.
(1)求y=f(x)的表达式;
(2)数列{an},{bn},若对任意n均存在一个函数gn(x),使得对任意的非零实数x都满足gn(x)•f(x)+anx+bn=xn+1,(n∈N*),求:数列{an}与{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省宁波市镇海中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知:二次函数f(x)=ax2+bx+c同时满足条件:①f(3-x)=f(x);②f(1)=0;③对任意实数恒成立.
(1)求y=f(x)的表达式;
(2)数列{an},{bn},若对任意n均存在一个函数gn(x),使得对任意的非零实数x都满足gn(x)•f(x)+anx+bn=xn+1,(n∈N*),求:数列{an}与{bn}的通项公式.

查看答案和解析>>

同步练习册答案