【题目】下面给出四种说法:
①设、、分别表示数据、、、、、、、、、的平均数、中位数、众数,则;
②在线性回归模型中,相关指数表示解释变量对于预报变量变化的贡献率,越接近于,表示回归的效果越好;
③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
④设随机变量服从正态分布,则.
其中不正确的是( ).
A. ①B. ②C. ③D. ④
【答案】C
【解析】
对于A,根据数据求出的平均数,众数和中位数即可判断;
对于B,相关指数R2越接近1,表示回归的效果越好;
对于C,根据频率分布直方图判定;
对于D,设随机变量ξ服从正态分布N(4,22),利用对称性可得结论;
解:①将数据按从小到大的顺序排列为:
、、、、、、、、、,
中位数:;
;
这组数据的平均数是.
因为此组数据中出现次数最多的数是,
所以是此组数据的众数;
则;
②越接近于,表示回归的效果越好,正确;
③根据频率分布直方图的意义,因为小矩形的面积之和等于,频率之和也为,
所以有各小长方形的面积等于相应各组的频率;故③错;
④∵随机变量服从正态分布,
∴正态曲线的对称轴是,
∴.故④正确.
故选.
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,,.
(1)求数列的通项公式;
(2)设数列满足:
对于任意,都有成立.
①求数列的通项公式;
②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:
可能与平面平行;
与BC所成的最大角为;
与PQ一定垂直;
与所成的最大角的正切值为;
.
其中正确的有______写出所有正确命题的序号
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )
A. 关于直线对称 B. 关于直线对称
C. 关于点对称 D. 关于点对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中, 点是边的中点,将沿折起,使平面平面,连接得到如图所示的几何体.
(1)求证; 平面;
(2)若二面角的平面角的正切值为求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
()设曲线在处的切线为,到点的距离为,求的值.
()若对于任意实数,恒成立,试确定的取值范围.
()当时,是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,为的中点.
(I)若为上的一点,且与直线垂直,求的值;
(Ⅱ)在(I)的条件下,设异面直线与所成的角为45°,求直线与平面成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:
(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com