精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+(c-3a-2b)x+d的图象如图所示.
(1)求c,d的值;
(2)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:计算题,导数的概念及应用
分析:(1)求导函数,利用函数f(x)的图象过点(0,3),且f′(1)=0,建立方程,即可求c,d的值;
(2)利用函数f(x)在x=2处的切线方程为3x+y-11=0,建立方程,即可求出a,b,从而可求函数f(x)的解析式.
解答: 解:函数f(x)的导函数为f′(x)=3ax2+2bx+c-3a-2b…(3分)
(1)由图可知,函数f(x)的图象过点(0,3),且f′(1)=0
d=3
3a+2b+c-3a-2b=0
  ⇒
d=3
c=0
…(7分)
(2)依题意  f′(2)=-3且f(2)=5,
12a+4b-3a-2b=-3
8a+4b-6a-4b+3=5

解得a=1,b=-6,
∴f(x)=x3-6x2+9x+3…(12分)
点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的解析式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)图象进行左右平移使其图象关于原点中心对称,则平移的最小长度为(  )
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
3
4
,且α为第四象限角,则cosα等于(  )
A、
3
5
B、-
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的图象(部分)如图所示;
(Ⅰ)求函数f(x)的解析是;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2f(A)=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2xcosφ+cos2xsinφ,x∈R,0<φ<π,f(
π
4
)=-
3
2

(1)求f(x)的表达式;
(2)若f(
α
2
-
π
3
)=
5
13
,α∈(
π
2
,π),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

岳阳市临港新区自2009年6月8日开港来,吸引了一批投资过亿元的现代工业和物流储运企业落户.根据规划,2025年新港将全部建成13个泊位,从2014年(第一年)开始对其中某个子港口今后10年的发展规划,有如下两种方案:
方案甲:按现状进行运营.据测算,每年可收入800万元,但由于港口淤积日益严重,从明年开始需投资进行清淤,第一年投资50万元,以后逐年递增20万元.
方案乙:从2014年起开始投资4000万元进港口改造,以彻底根治港口淤积并提高吞吐能力.港口改造需用时4年,在此期间边改造边运营.据测算,开始改造后港口第一年的收入为400万元,在以后的4年中,每年收入都比上一年增长50%,而后各年的收入都稳定在第5年的水平上.
(Ⅰ)至少经过多少年,方案乙能收回投资(累计总收益为正数)?
(Ⅱ)到哪一年,方案乙的累计总收益超过方案甲?(收益=收入-投资)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=10,an=6an+1-
1
2
×4n,n≥2,n∈Z.
(1)求数列{an}的通项公式;
(2)证明:
1
a1
+
1
a2
+
1
a3
+…+
1
an
1
8

(3)证明:数列{an}中任意三项不可能成为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=1,a2+a4=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)将数列{an}的前4项抽去其中一项后,剩下的三项构成公比大于1的等比数列{bn}的前三项,记数列{bn}前n项的和为Sn,若对任意n∈N*,使得Sn≥λ成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2cm的球)正好落人孔中的概率是
 

查看答案和解析>>

同步练习册答案