精英家教网 > 高中数学 > 题目详情
14.曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为(  )
A.$\frac{e^2}{2}$B.2e2C.e2D.$\frac{9}{4}{e^2}$

分析 求出函数的导数,可得切线的斜率,由点斜式方程可得切线的方程,令x=0,y=0,可得切线与坐标轴的交点,由三角形的面积公式,计算即可得到所求值.

解答 解:y=ex的导数为y′=ex
可得曲线y=ex在点(2,e2)处的切线斜率为k=e2
即有曲线y=ex在点(2,e2)处的切线方程为y-e2=e2(x-2),
令x=0,可得y=-e2
令y=0,可得x=1,
则切线与坐标轴所围三角形的面积为$\frac{1}{2}$×1×e2=$\frac{{e}^{2}}{2}$.
故选:A.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,以及三角形的面积的计算,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C极坐标方程:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,点P极坐标为$({2\sqrt{3},\frac{π}{6}})$,直线l过点P,且倾斜角为$\frac{π}{3}$.
(1)求曲线C的直角坐标方程及直线l参数方程;
(2)若直线l与曲线C交于A,B两点,求$|{\frac{1}{{|{PA}|}}-\frac{1}{{|{PB}|}}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\left\{\begin{array}{l}{cos(π{x}^{2}),-1<x<0}\\{{e}^{x}-1,x≥0}\end{array}\right.$,若f(a)=0,则a的所有可能值组成的集合为(  )
A.{0}B.{0,$\frac{\sqrt{2}}{2}$}C.{0,-$\frac{\sqrt{2}}{2}$}D.{-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,∠ABC=$\frac{π}{3}$,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为$\frac{π}{3}$,则sinθ=$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a>b>0,0<c<1,则(  )
A.logac<logbcB.logca<logcbC.c<bcD.a>cb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“方程$\frac{{x}^{2}}{m}$$+\frac{{y}^{2}}{6-2m}$=1表示的曲线是焦点在y轴上的椭圆”的必要不充分条件是(  )
A.1<m<2B.0<m<2C.m<2D.m≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点F为抛物线C:y2=2px(p>0)的焦点,M(4,t)(t>0)为抛物线C上的点,且|MF|=5,线段MF的中点为N,点T为C上的一个动点,则|TF|+|TN|的最小值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.等差数列{an}中,a2+a3=4,a4+a6=6.
(1)求数列{an}的通项公式;   
(2)求数列{an}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{AB}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则∠ABC=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案