精英家教网 > 高中数学 > 题目详情
已知0<α<β<γ≤2π,且cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0,求cos(β-α)的值,并求β-α.
分析:由cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0可得,-cosγ=cosα+cosβ,-sinγ=sinα+sinβ
两边同时平方相加可得,sin2γ+cos2γ=(cosα+cosβ)2+(sinα+sinβ)2,整理可求cos(β-α)=-
1
2

结合0<α<β≤2π可求β-α
解答:解:∵cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0
∴-cosγ=cosα+cosβ,-sinγ=sinα+sinβ
两边同时平方相加可得,sin2γ+cos2γ=(cosα+cosβ)2+(sinα+sinβ)2
∴1=2+2cosαcosβ+2sinαsinβ
∴2cos(α-β)=-1,cos(β-α)=-
1
2

∵0<α<β≤2π∴0<β-α<2π
β-α=
3
3
点评:本题主要考查了同角平方关系的应用,解题的关键是要发现sin2γ+cos2γ=1,从而可得α,β的基本关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知0<x<
43
,求x(4-3x)的最大值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<
π
4
,设x=(sinα)sinα,y=(cosα)sinα,z=(sinα)cosα,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<θ<1800,且θ角的6倍角的终边和θ角终边重合,则满足条件的角θ为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<m<n<1,则a=logm(m+1)
b=logn(n+1)(在横线上填“>”,“<”或“=”).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<1,则函数y=
1
x
+
4
1-x
的最小值是
 

查看答案和解析>>

同步练习册答案