精英家教网 > 高中数学 > 题目详情
19.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f′(x),且满足xf′(x)+2f(x)>0,则不等式(x+2015)2f(x+2015)<16f(4)的解集为(  )
A.{x|x>-2015}B.{x|x<-2015}C.{x|-2015<x<-2011}D.{x|-2011<x<0}

分析 由题意构造函数函数g(x)=x2f(x),求导可知函数是区间(0,+∞)上的增函数,把原不等式转化为x+2015<4,结合x+2015>0求得x的范围.

解答 解:∵[x2f(x)]'=2xf(x)+x2f'(x)=x[2f(x)+xf'(x)],又xf'(x)+2f(x)>0,x>0,
∴[x2f(x)]'>0,则函数g(x)=x2f(x)是区间(0,+∞)上的增函数.
由不等式(x+2015)2f(x+2015)<42f(4),得x+2015<4,解得x<-2011,
又由x+2015>0,得x>-2015,即x∈(-2015,-2011).
故选:C.

点评 本题考查利用导数研究函数的单调性,训练了函数构造法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图是一个几何体的三视图,若它的体积是$\frac{2}{3}$,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)(i)若花店在某一天购进16枝玫瑰花,当天只卖了14枝,则该花店当天的利润为多少元?
(ii)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量n14151617181920
频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设全集U={0,1,2,3,4,5},集合A={2,4},B={x|x2-5x+4<0,x∈U},则集合(∁UA)∩(∁UB)=(  )
A.{0,4,5,2}B.{0,4,5}C.{2,4,5}D.{0,1,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={-2,0,$\frac{1}{3}$,4),B={x|$\frac{1}{x}$≤1},则A∩B=(  )
A.{4}B.{-2,4}C.{-2,0,4)D.{-2,$\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有(参考数据:0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.)(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点P的坐标(x,y)满足$\left\{{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}}\right.$,过点P的直线l与圆C:x2+y2=16相交于A,B两点,则|AB|的最小值为(  )
A.$2\sqrt{6}$B.$2\sqrt{7}$C.$4\sqrt{2}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.利用计算机模拟来估计未来三天中恰有两天下雨的概率过程如下:先产生0到9之间均匀整数随机数,用1、2、3、4表示下雨,用5、6、7、8、9、0表示不下雨,每三个随机数作为一组,共产生20组:
907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989,则每一天下雨概率是0.4,三天中两天下雨概率是0.25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)($\overrightarrow{a}$-2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$).

查看答案和解析>>

同步练习册答案