| A. | {x|x>-2015} | B. | {x|x<-2015} | C. | {x|-2015<x<-2011} | D. | {x|-2011<x<0} |
分析 由题意构造函数函数g(x)=x2f(x),求导可知函数是区间(0,+∞)上的增函数,把原不等式转化为x+2015<4,结合x+2015>0求得x的范围.
解答 解:∵[x2f(x)]'=2xf(x)+x2f'(x)=x[2f(x)+xf'(x)],又xf'(x)+2f(x)>0,x>0,
∴[x2f(x)]'>0,则函数g(x)=x2f(x)是区间(0,+∞)上的增函数.
由不等式(x+2015)2f(x+2015)<42f(4),得x+2015<4,解得x<-2011,
又由x+2015>0,得x>-2015,即x∈(-2015,-2011).
故选:C.
点评 本题考查利用导数研究函数的单调性,训练了函数构造法,是中档题.
科目:高中数学 来源: 题型:解答题
| 日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,4,5,2} | B. | {0,4,5} | C. | {2,4,5} | D. | {0,1,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {-2,4} | C. | {-2,0,4) | D. | {-2,$\frac{1}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{6}$ | B. | $2\sqrt{7}$ | C. | $4\sqrt{2}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com