精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-1(x≤0)
f(x-1)+1(x>0)
,把函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,该数列的前n项的和Sn,则S10=(  )
A.45B.55C.210-1D.29-1
当x≤0时,g(x)=f(x)-x+1=x,故a1=0
当0<x≤1时,有-1<x-1≤0,则f(x)=f(x-1)+1=2(x-1)-1+1=2x-2,g(x)=f(x)-x+1=x-1,故a2=1
当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2(x-1)-2+1=2x-3,g(x)=f(x)-x+1=x-2,故a3=2
当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2(x-1)-3+1=2x-4,g(x)=f(x)-x+1=x-3,故a4=3

以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=n+1,
故数列的前n项构成一个以0为首项,以1为公差的等差数列
故S10=
10(10-1)
2
=45
故选A
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案