精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=1+$\frac{a}{x}$+lnx+$\frac{lnx}{x}$,且曲线f(x)在点(1,f(1))处的切线与直线x-y+4=0平行.
(1)求a的值;
(2)判断函数f(x)的单调性;
(3)记g(x)=$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,试证明:当x>1时,f(x)>(e+1)g(x).

分析 (1)求出f(x)的导数,根据f′(1)=1,求出a的值即可;
(2)求出f(x)的导数,根据导函数的单调性求出f′(x)>0,从而求出f(x)在(0,+∞)递增;
(3)根据函数的单调性分别得出$\frac{f(x)}{e+1}$>$\frac{2}{e+1}$,g(x)<$\frac{2}{e+2}$,从而证出结论.

解答 解:(1)f′(x)=$\frac{1-a+x-lnx}{{x}^{2}}$,(x>0),
令f′(1)=1,得2-a=1,解得a=1;
(2)由(1)知,
f(x)=1+$\frac{1}{x}$+lnx+$\frac{lnx}{x}$,f′(x)=$\frac{x-lnx}{{x}^{2}}$,
再令ω(x)=x-lnx   则ω′(x)=$\frac{x-1}{x}$,
当x>1时,ω′(x)>0,ω(x)递增,
当0<x<1时,ω′(x)<0,ω(x)递减,
∴ω(x)在x=1处取得唯一的极小值,即为最小值,
即ω(x)≥ω(1)=1>0,
∴f′(x)>0,
∴f(x)在(0,+∞)上是增函数;
(3)要证f(x)>(e+1)g(x),
即证$\frac{f(x)}{e+1}$>g(x),
x>1时,f(x)是增函数,
故f(x)>f(1)=2,
故$\frac{f(x)}{e+1}$>$\frac{2}{e+1}$,
g′(x)=$\frac{{2e}^{x-1}(1{-e}^{x})}{{({xe}^{x}+1)}^{2}}$,
∵x>1,∴1-ex<0,∴g′(x)<0,
即g(x)在(1,+∞)递减,
∴x>1时,g(x)<g(1)=$\frac{2}{e+1}$,
∴$\frac{f(x)}{e+1}$>$\frac{2}{e+1}$>g(x),
即f(x)>(e+1)g(x).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查曲线的切线方程问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2-2x+alnx(a∈R).
(1)试讨论f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2(x1<x2),求证:f(x2)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在极坐标系中,圆ρ=-6sinθ的圆心的极坐标是(  )
A.(3,$\frac{π}{2}$)B.(3,-$\frac{π}{2}$)C.(3,0)D.(3,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.8 cm3B.12 cm3C.$\frac{32}{3}$ cm3D.$\frac{40}{3}$ cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是正方形,AB=2,PB与平面PAC所成的角的正弦值为$\frac{\sqrt{10}}{10}$,若这个四棱锥各顶点都在一个球面上,则这个球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四边形ABCD的内角A与C互补,AB=BC=2,CD=3,DA=1.
(1)求角C和BD的长;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线x+y-4=0与圆x2+y2=9相交于A,B两点.则以弦AB为直径圆方程是(x-2)2+(y-2)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC的面积为1,tanB=$\frac{1}{2}$,tanC=-2,求△ABC的边长及tanA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合M={1,2,3,…,n}(n∈N*),对M的任意非空子集A,定义f(A)为A中的最大元素,当A取遍M的所有非空子集时,对应的f(A)的和为Sn,Sn=(n-1)2n+1.

查看答案和解析>>

同步练习册答案