精英家教网 > 高中数学 > 题目详情
2.已知△ABC的面积为1,tanB=$\frac{1}{2}$,tanC=-2,求△ABC的边长及tanA.

分析 利用诱导公式、两角和的正切公式求得tanA的值.再利用同角三角函数的基本关系,求得角B、C的正弦值和余弦值,可得A的正弦值和余弦值,再利用正弦定理以及△ABC的面积为1,求得各边长.

解答 解:∵△ABC的面积为1,tanB=$\frac{1}{2}$,tanC=-2,
∴tanA=-tan(B+C)=-$\frac{tanB+tanC}{1-tanBtanC}$=$\frac{3}{4}$.
∵tanB=$\frac{sinB}{cosB}$=$\frac{1}{2}$,可得B为锐角,
∴cosB=$\sqrt{\frac{1}{1{+tan}^{2}B}}$=$\frac{2\sqrt{5}}{5}$,sinB=$\sqrt{{1-cos}^{2}B}$=$\frac{\sqrt{5}}{5}$.
由tanC=-2,可得C为钝角,同理求得cosC=-$\frac{\sqrt{5}}{5}$,sinC=$\frac{2\sqrt{5}}{5}$.
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{5}}{5}•(-\frac{\sqrt{5}}{5})$+$\frac{2\sqrt{5}}{5}$•$\frac{2\sqrt{5}}{5}$=$\frac{3}{5}$.
再根据△ABC的面积为$\frac{1}{2}$ab•sinC=$\frac{\sqrt{5}}{5}$ab=1,
以及$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,即 $\frac{a}{\frac{3}{5}}=\frac{b}{\frac{\sqrt{5}}{5}}$=$\frac{c}{\frac{2\sqrt{5}}{5}}$,
求得a=$\sqrt{3}$,b=$\frac{\sqrt{15}}{3}$,c=$\frac{2\sqrt{15}}{3}$.

点评 本题主要考查诱导公式、同角三角函数的基本关系,两角和差的三角公式的应用,正弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+2x-1(b∈R).
(1)设g(x)=$\frac{f(x)+1}{{x}^{2}}$,若函数g(x)在(0,+∞)上没有零点,求实数b的取值范围;
(2)若对?x∈[1,2],均?t∈[1,2],使得et-lnt-4≤f(x)-2x,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=1+$\frac{a}{x}$+lnx+$\frac{lnx}{x}$,且曲线f(x)在点(1,f(1))处的切线与直线x-y+4=0平行.
(1)求a的值;
(2)判断函数f(x)的单调性;
(3)记g(x)=$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,试证明:当x>1时,f(x)>(e+1)g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A={x|-1≤x<3},B={x|1<x≤3},全集为R.
则A∩B=(1,3),A∪B=[-1,3]
UA=(-∞,-1)∪[3,+∞)
U(A∪B)=(-∞,-1)∪(3,+∞)
(∁UA)∩(∁UB)=(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于集合A,B,如果映射f:A→B满足f(a)+f(b)=f(c).则把此映射称为“引射”,若A={a,b,c},B={1,0,-1},则f:A→B构成的所有映射中“引导映射”的概率$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在y轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆的概率为(  )
A.$\frac{3}{8}$B.$\frac{15}{32}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是(  )
A.x>60?,i=i-1B.x<60?,i=i+1C.x>60?,i=i+1D.x<60?,i=i-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y=cos(2x+\frac{π}{3})$的定义域是[a,b],值域为$[-\frac{1}{2},1]$,则b-a的最大值与最小值之和为(  )
A.B.πC.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=[x]的函数值表示不超过x的最大整数,如[-3.5]=-4,[2.2]=2,当x∈(-2.5,-2)时,函数f(x)的解析式为(  )
A.-2xB.-3xC.-3D.-2

查看答案和解析>>

同步练习册答案