精英家教网 > 高中数学 > 题目详情
7.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在y轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆的概率为(  )
A.$\frac{3}{8}$B.$\frac{15}{32}$C.$\frac{1}{2}$D.$\frac{5}{8}$

分析 根据椭圆的性质结合椭圆离心率,求出a,b满足的条件,求出对应的面积,结合几何概型的概率公式进行求解即可.

解答 解:∵在区间[1,5]和[2,4]分别取一个数,记为a,b,
∴$\left\{\begin{array}{l}{1≤a≤5}\\{2≤b≤4}\end{array}\right.$,
若方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在y轴上且离心率小于$\frac{{\sqrt{3}}}{2}$,
则$\left\{\begin{array}{l}{b>a}\\{e=\frac{c}{a}<\frac{\sqrt{3}}{2}}\end{array}\right.$,
由e=$\frac{c}{a}$<$\frac{{\sqrt{3}}}{2}$得c<$\frac{{\sqrt{3}}}{2}$a,
平方得c2<$\frac{3}{4}$a2,即a2-b2<$\frac{3}{4}$a2
即b2>$\frac{1}{4}$a2,则b>$\frac{1}{2}$a或b$<-\frac{1}{2}$a(舍),
即$\left\{\begin{array}{l}{b>a}\\{b>\frac{1}{2}a}\end{array}\right.$,
作出不等式组对应的平面区域如图:
则F(2,2),E(4,4),
则梯形ADEF的面积S=$\frac{(1+3)×2}{2}$=4,矩形的面积S=4×2=8,
则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在y轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆的概率P=$\frac{4}{8}=\frac{1}{2}$
故选:C.

点评 本题主要考查几何概型的概率的计算,根据椭圆的性质求出a,b的条件,求出对应的面积,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知正三角形ABC的边长为a,面积为s,内切圆的半径为r,则r=$\frac{2s}{3a}$,类比这一结论可知:正四面体S-ABC的底面的面积为S,内切球的半径为R,体积为V,则R=$\frac{3V}{4S}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四边形ABCD的内角A与C互补,AB=BC=2,CD=3,DA=1.
(1)求角C和BD的长;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\sqrt{\frac{8{x}^{2}+9}{2{x}^{2}+1}}$的值域是(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC的面积为1,tanB=$\frac{1}{2}$,tanC=-2,求△ABC的边长及tanA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,sinA+sinC=psinB(p∈R),且ac=$\frac{1}{4}$b2
(Ⅰ)当p=$\frac{5}{4}$,b=1时,求a,c的值;
(Ⅱ)若角B为锐角,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a>b>0且a3-b3=a2-b2,则a+b的取值范围是(  )
A.(0,+∞)B.(1,+∞)C.(1,2)D.$({1,\frac{4}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)是R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(3)=0;f(2013)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于函数f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)探索函数f(x)的单调性;
(Ⅱ)是否存在实数a,使函数f(x)为奇函数?

查看答案和解析>>

同步练习册答案