精英家教网 > 高中数学 > 题目详情
10.已知正三角形ABC的边长为a,面积为s,内切圆的半径为r,则r=$\frac{2s}{3a}$,类比这一结论可知:正四面体S-ABC的底面的面积为S,内切球的半径为R,体积为V,则R=$\frac{3V}{4S}$.

分析 根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.

解答 解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为V=$\frac{1}{3}$•4SR
猜想:正四面体S-ABC的底面的面积为S,内切球的半径为R,体积为V,
则四面体ABCD的内切球半径R=$\frac{3V}{4S}$,
故答案:$\frac{3V}{4S}$.

点评 本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.(普通班做)二项式(x-$\frac{1}{x}$)6的展开式的常数项是-20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.我们在学习立体几何推导球的体积公式时,用到了祖日恒原理:即两个等高的几何体,被等高的截面所截,若所截得的面积总相等,那么这两个几何体的体积相等.类比此方法:求双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),与x轴,直线y=h(h>0)及渐近线$y=\frac{b}{a}x$所围成的阴影部分(如图)绕y轴旋转一周所得的几何体的体积a2hπ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校安排四个班到三个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有(  )
A.24B.36C.48D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+2x-1(b∈R).
(1)设g(x)=$\frac{f(x)+1}{{x}^{2}}$,若函数g(x)在(0,+∞)上没有零点,求实数b的取值范围;
(2)若对?x∈[1,2],均?t∈[1,2],使得et-lnt-4≤f(x)-2x,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.三棱锥A-PBC中,D是线段PC上一点,且AD⊥面BPC,AC=2,BC=3,AB=$\sqrt{7}$,E是BC上一点,且CE=1.
(1)求证:BC⊥面ADE;
(2)若∠ACP和∠BCP互余,求直线AB和面BPC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an},满足a1=0,an+1=$\frac{n+2}{n}$an$+\frac{1}{n}$,若不等式$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<m恒成立,则整数m的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+ax2+bx+a2(ab∈R)
(1)若函数f(x)在x=1处有极值10,求b的值;
(2)若对任意a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦点在y轴上且离心率小于$\frac{{\sqrt{3}}}{2}$的椭圆的概率为(  )
A.$\frac{3}{8}$B.$\frac{15}{32}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

同步练习册答案