分析 确定AC2-BC2=a2,由祖暅原理知,此旋转体的体积,等价于一个半径为a,高为h的柱体的体积.
解答 解:由题意,图形是一个圆环,圆环的半径为AC,BC,其面积S=π(AC2-BC2)
∵$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$⇒$A{C^2}={a^2}+\frac{a^2}{b^2}{m^2}$,
同理$B{C^2}=\frac{a^2}{b^2}{m^2}$
∴AC2-BC2=a2,由祖暅原理知,此旋转体的体积,等价于一个半径为a,高为h的柱体的体积为a2hπ.
故答案为:a2hπ.
点评 本题主要考查祖暅原理的应用,求旋转体的体积的方法,体现了等价转化、数形结合的数学思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③ | C. | ①③ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com