精英家教网 > 高中数学 > 题目详情

【题目】设圆直线.

(1)求证: 直线与圆总有两个不同的交点

(2)设与圆交于不同的两点求弦中点的轨迹方程

(3)若点分弦所得的向量满足求此时直线的方程.

【答案】1见解析23.

【解析】【试题分析】(1由于直线过定点,而这个点在圆内,故直线与圆总有两个不同的交点.2,利用,利用两个向量数量积为令列方程,化简可得的轨迹方程.3设出两点的坐标,利用可得两者横坐标的关系,联立直线的方程和圆的方程,写出韦达定理,由此解得,进而求得的方程.

【试题解析】

(1)直线恒过定点且它在圆内.

(2)设不与重合时连接可得的轨迹方程为 .

(3)设 .

将直线与圆的方程联立得 .

可得.

故直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合,集合.

(1)若“”是“”的必要条件,求实数的取值范围;

(2)若中只有一个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).

(1)分别将A、B两产品的利润表示为投资量的函数关系式;

(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且在.

1)求的值;并求函数在点处的切线方程;

(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响对近五年该农产品的年产量和价格统计如下表

参考公式: .

根据参考公式以求得

1)求关于的线性回归方程

2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过点的直线的参数方程为为参数 的倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.曲线曲线.

(1)若直线与有且仅有一个公共点求直线的极坐标方程

(2)若直线与曲线交于不同两点交于不同两点这四点从左到右依次为的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数为奇函数,且在上单调递增,若,则不等式的解集为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)﹣g(x).
(1)若x=0是F(x)的极值点,求a的值;
(2)当 a=1时,设P(x1 , f(x1)),Q(x2 , g(x2))(x1>0,x2>0),且PQ∥x轴,求P、Q两点间的最短距离;
(3)若x≥0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

同步练习册答案