精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,过点的直线的参数方程为为参数 的倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.曲线曲线.

(1)若直线与有且仅有一个公共点求直线的极坐标方程

(2)若直线与曲线交于不同两点交于不同两点这四点从左到右依次为的取值范围.

【答案】12

【解析】【试题分析】(1写出直线的普通方程,将曲线的极坐标方程化为直角坐标方程,利用圆心到直线的距离等于半径列方程,从而求得直线的斜率,进而求得直线方程,最后化为极坐标方程.2将直线的参数方程代入的方程,写出韦达定理,同理代入的方程,写出韦达定理,由此计算得的取值范围.

【试题解析】

(1)设则直线的普通方程为.曲线化成直角坐标方程为圆心为半径为1,由题意知,直线相切

解得的直角坐标方程为.的极坐标方程为

.

2有两个不同的交点由(1)知.两点对应参数分别为联立的方程得

.的直角坐标方程为.两点所对应的参数为.联立的方程得 ..

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为为曲线上的动点,点在线段上,且满足

1)求点的轨迹的直角坐标方程;

2)直线的参数方程是为参数),其中 交于点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对边长分别是a,b,c,已知c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)求 +a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ﹣6cosθ=0,直线l的参数方程为: (t为参数),l与C交于P1 , P2两点.
(1)求曲线C的直角坐标方程及l的普通方程;
(2)已知P0(3,0),求||P0P1|﹣|P0P2||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆直线.

(1)求证: 直线与圆总有两个不同的交点

(2)设与圆交于不同的两点求弦中点的轨迹方程

(3)若点分弦所得的向量满足求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象在[a,b]上连续不断,定义:

f1x=min{ft| a≤t≤x}x∈[ab]),

f2x=max{ft| a≤t≤x}x∈[ab])。

其中,min{f(x)| x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值若存在最小正整数k,使得f2x-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”。

(1)若f(x)=sinxx[ ],请直接写出f1x),f2(x)的表达式;

(2)已知函数f(x)=(x-1)2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克与时间小时成正比;药物释放完毕后,的函数关系式为为常数,如图所示.据图中提供的信息,回答下列问题:

1写出从药物释放开始,每立方米空气中的含药量毫克与时间小时之间的函数关系式;

2据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高级中学在今年五一期间给校内所有教室安装了同一型号的空调,关于这批空调的使用年限单位:年和所支出的维护费用单位:千元厂家提供的统计资料如表:

x

2

4

5

6

8

y

30

40

60

50

70

xy之间是线性相关关系,请求出维护费用y关于x的线性回归直线方程

若规定当维护费用y超过千元时,该批空调必须报度,试根据的结论求该批空调使用年限的最大值结果取整数参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机卖场对市民进行华为手机认可度的调查,随机抽取200名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:

(1)求频率分布表中的值并补全频率分布直方图

(2)利用频率分布直方图估计被抽查市民的平均年龄

(3)从年龄在 的被抽查者中利用分层抽样选取10人参加华为手机用户体验问卷调查,再从这10人中选出2人,求这2人在不同的年龄组的概率.

查看答案和解析>>

同步练习册答案