精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C所对边长分别是a,b,c,已知c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)求 +a的最大值.

【答案】
(1)解:∵c=2,C= ,由余弦定理c2=a2+b2﹣2abcosC得:a2+b2﹣ab=4,

∴ab=4,

联立方程组 ,解得a=2,b=2


(2)解:由题意 = =

= ,(其中 ),

当sin(B+φ)=1 时, 的最大值为


【解析】(1)由c=2,C= ,利用余弦定理可得:a2+b2﹣ab=4,根据三角形的面积 ,联立方程组解出即可得出.(2)利用正弦定理、和差公式、三角函数的单调性值域即可得出.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 是抛物线上两点,且两点横坐标之和为3.

(1)求直线的斜率;

(2)若直线,直线与抛物线相切于点,且,求方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2017年某交社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们的年龄分成6组后得到如图所示的频率分布直方图.

(1)根据广场舞者年龄的频率分布直方图,估计广场舞者的平均年龄;

(2)若从年龄在内的广场舞者中任取2名,求选中的两人中至少有一人年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格(单位:元)与销售时间(单位:天)的函数关系为,且该商品的日销售量Q(单位:件)与销售时间(单位:天)的函数关系为,则这种商品的日销售量金额最大的一天是30天中的第__________天.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).

(1)分别将A、B两产品的利润表示为投资量的函数关系式;

(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=.

(1)求f(x)的解析式;

(2)判断f(x)的单调性;

(3)若对任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且在.

1)求的值;并求函数在点处的切线方程;

(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过点的直线的参数方程为为参数 的倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.曲线曲线.

(1)若直线与有且仅有一个公共点求直线的极坐标方程

(2)若直线与曲线交于不同两点交于不同两点这四点从左到右依次为的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线C: =1(a>0,b>0)两条渐近线l1 , l2与抛物线y2=﹣4x的准线1围成区域Ω,对于区域Ω(包含边界),对于区域Ω内任意一点(x,y),若 的最大值小于0,则双曲线C的离心率e的取值范围为

查看答案和解析>>

同步练习册答案