【题目】若函数为奇函数,且在上单调递增,若,则不等式的解集为
A. B. C. D.
【答案】A
【解析】
根据题意,由奇函数的性质可得f(﹣2)=﹣f(2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f(x)<0,在(﹣2,0)上,f(x)>0,再结合函数的奇偶性可得在区间(0,2)上,f(x)<0,在(2,+∞)上,f(x)>0,综合即可得答案.
根据题意,函数y=f(x)为奇函数,且f(2)=0,
则f(﹣2)=﹣f(2)=0,
又由f(x)在(﹣∞,0)上单调递增,
则在区间(﹣∞,﹣2)上,f(x)<0,在(﹣2,0)上,f(x)>0,
又由函数y=f(x)为奇函数,
则在区间(0,2)上,f(x)<0,在(2,+∞)上,f(x)>0,
综合可得:不等式f(x)>0的解集(﹣2,0)∪(2,+∞);
故选:A.
科目:高中数学 来源: 题型:
【题目】如图给出的是计算 + + +…+ + 的值的程序框图,其中判断框内应填入的是( )
A.i≤4030?
B.i≥4030?
C.i≤4032?
D.i≥4032?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于M,N两点,且.
Ⅰ求圆C的标准方程;
Ⅱ过点的直线l与圆C交于不同的两点D,E,若时,求直线l的方程;
Ⅲ已知Q是圆C上任意一点,问:在x轴上是否存在两定点A,B,使得?若存在,求出A,B两点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆,直线.
(1)求证: ,直线与圆总有两个不同的交点;
(2)设与圆交于不同的两点,求弦中点的轨迹方程;
(3)若点分弦所得的向量满足,求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,回答下列问题:
(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4人去旅游,旅游地点有A,B两个地方可以选择,但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子决定自己去哪里玩,掷出能被3整除的数时去A地,掷出其他的则去B地.
(1)求这4个人恰好有1个人去A地的概率;
(2)用X,Y分别表示这4个人中去A,B两地的人数,记ξ=XY,求随机变量ξ的分布列与数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据2,,如表所示:
试销单价元 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量件 | 90 | 84 | 83 | 80 | q | 68 |
已知.
求表格中q的值;
已知变量x,y具有线性相关性,试利用最小二乘法原理,求产品销量y关于试销单价x的线性回归方程参考数据;
用中的回归方程得到的与对应的产品销量的估计值记为2,,当时,则称为一个“理想数据”试确定销售单价分别为4,5,6时有哪些是“理想数据”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com