精英家教网 > 高中数学 > 题目详情
已知集合A={x|0<3-x≤4},集合B={x|2x≥log381},求A∩B.
考点:其他不等式的解法,交集及其运算
专题:计算题
分析:直接求解集合A,通过解指数不等式求出集合B,然后求解交集.
解答: 解:由0<3-x≤4⇒-1≤x<3∴A=[-1,3)
由2x≥log381⇒x≥2∴B=[2,+∞)
∴A∩B=[2,3).
点评:本题考查指数不等式的解法,集合交集的求法,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中.已知AB=2,AC=4,A1A=3,D是BC的中点.
(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上的两个向量
OA
OB
满足
|OA|
=a,
|OB|
=b,且
OA
OB
,a2+b2=4.向量:
OP
=x
OA
+y
OB
(x,y∈R),且a2(x-
1
2
)2+b2(y-
1
2
)2
=1.
(1)如果点M为线段AB的中点,求证:
MP
=(x-
1
2
)
OA
+(y-
1
2
)
OB

(2)求丨
OP
丨的最大值,并求此时四边形OAPB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x+y-11≥0
3x-y+3≥0
5x-3y+9≤0
,表示的平面区域为D,若指数函数y=ax的图象上存在区域D上的点,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB、MN为圆C:(x-2)2+y2=9的两条相互垂直的弦,垂足为R(3,a),若四边形ABMN的面积的最大值为14,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c,下列不等式成立的是(  )
A、-a>-b
B、a+c<b+c
C、2a>2b
D、
1
a
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是(  )
A、甲科总体的标准差最小
B、乙科总体的标准差及平均数都居中
C、丙科总体的平均数最小
D、甲、乙、丙的总体的平均数不相同

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为4
17
,数列{an}满足a=2,(an+1-an)•g(an)+f(an)=0(n∈N*).
(1)求函数f(x)的解析式;
(2)求数列{an}的通项公式;
(3)设bn=3f(an)-g(an),求数列的{bn}的最值及相应的n.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
x
被圆x2+y2-2x=0所截得的弦长是
 

查看答案和解析>>

同步练习册答案