精英家教网 > 高中数学 > 题目详情
化简:
(1)
sin(π-α)
cos(-α)tan(π+α)

(2)
cos(360°-α)tan(180°+α)
sin(180°-α)
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:(1)原式利用诱导公式化简,再利用同角三角函数间基本关系计算即可得到结果;
(2)原式利用诱导公式化简,计算即可得到结果.
解答: 解:(1)原式=
sinα
cosαtanα
=1;
(2)原式=
cosαtanα
sinα
=1.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a、b是互不相等的正数,则下列不等式中恒成立的个数是(  )
①(a+3)2>2a2+6a+11
a+3
-
a+1
a+2
-
a

③a2+
1
a2
≥a+
1
a
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项,若bn=log2an+1
(1)求数列{bn}的通项公式;
(2)若数列{cn}满足cn=an+1+
1
b2n-1•b2n+1
,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,已知an>0,a1=2,a2+a3=24.
(1)求数列{an}的通项公式;
(2)求数列{
1
2
an+1}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB=PA=1,AD=
3
,F是PB中点,E为BC上一点.
(Ⅰ)求证:AF⊥平面PBC;
(Ⅱ)当BE为何值时,二面角C-PE-D为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD是平行四边形,BD=4,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D为60°.
(1)求证:BC⊥BD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知函数f(x)=x2-2ax-2alnx,g(x)=ln2x+2a2,其中x>0,a∈R.
(Ⅰ)若x=1是函数f(x)的极值点,求a的值;
(Ⅱ)若f(x)在区间(2,+∞)上单调递增,求a的取值范围;
(Ⅲ)记F(x)=f(x)+g(x),求证:F(x)≥
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.设点A,B分别在曲线C1
x=3+cosθ
y=4+sinθ
(θ为参数)和曲线C2:ρ=1上,求线段AB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m(a),M(a)分别是函数y=x2-ax+0.5a(a>0,0≤x≤1)的最小值和最大值,
(1)求m(a),M(a);
(2)求最值m(a),M(a)的最大值或最小值.

查看答案和解析>>

同步练习册答案