精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{5x-2,x<2}\\{{x}^{2}+2ax,x≥2}\end{array}\right.$,若f(f(1))=3a,则实数a=-3.

分析 根据自变量的值代入分段函数,从而得到方程求解即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{5x-2,x<2}\\{{x}^{2}+2ax,x≥2}\end{array}\right.$,
∴f(1)=5-2=3,
f(f(1))=f(3)=9+6a=3a,
解得,a=-3,
故答案为:-3.

点评 本题考查了分段函数的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是定义在R上的函数,若对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)求f(0)的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在R上是增函数,还是减函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点P(1,-2)且垂直于直线x-3y+2=0的直线方程为3x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知焦点均在x轴上的双曲线C1,与双曲线C2的渐近线方程分别为y=土k1x 与y=±k2x,记双曲线C1的离心率e1,双曲线C2的离心率e2,若k1k2=1,则e1e2的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了解宝鸡市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如表:
评估的平均得分(0,6)[6,8)[8,10]
全市的总体交通状况等级不合格合格优秀
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x|x-2|.
(1)作出函数f(x)=x|x-2|的大致图象;
(2)若方程f(x)-k=0有三个解,求实数k的取值范围.
(3)若x∈(0,m](m>0),求函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知从集合M到N的映射f满足f(a)-f(b)-f(c)=0,且集合M={a,b,c},N={-1,0,1},那么映射f的个数为(  )
A.7B.5C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的值满足f(x)<0,对任意实数x,y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).
(1)求f(1)的值,判断f(x)的奇偶性并证明;
(2)判断f(x)在(0,+∞)上的单调性,并给出证明;
(3)若a≥0且f(a+1)≤$\root{3}{9}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,且$\frac{a}{1-i}+\frac{b}{2-i}=\frac{1}{3-i}$,则数列{an+b}前100项的和为-910.

查看答案和解析>>

同步练习册答案