精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在[-1,1]上的奇函数,当x∈[0,1]时,f(x)=2x+ln(x+1)-1.
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
分析:(1)求函数f(x)的解析式,先设x∈[-1,0],则-x∈[0,1],解出f(-x),再由奇函数的定义得到f(-x)=-f(x),两者联立解出x∈[-1,0],上的解析式.再将f(x)的解析式写成分段函数的形式.
(2)不等式f(2x-1)+f(1-x2)≥0可由奇函数的性质变为f(2x-1)≥f(x2-1),利用单调性解这个抽象不等式即可.
解答:解:(1)设-1≤x≤0,则0≤-x≤1,
所以f(-x)=2-x+ln(1-x)-1=
1
2x
+ln(1-x)-1
.(3分)
又f(x)是奇函数,所以f(-x)=-f(x),
于是f(x)=-f(-x)=-
1
2x
-ln(1-x)+1
.(5分)
f(x)=
-
1
2x
-ln(1-x)+1,(-1≤x<0)
2x+ln(x+1)-1    (0≤x≤1).
(6分)
判断:f(x)在[-1,1]上是增函数;(8分)
(2)因奇函数f(x)在[-1,1]上是增函数,
所以f(2x-1)+f(1-x2)≥0?f(2x-1)≥f(x2-1) (10分)
?
2x-1≥x2-1
-1≤2x-1≤1
-1≤x2-1≤1
?
0≤x≤2
0≤x≤1
-
2
≤x≤
2
.
(14分)
解得0≤x≤1,所以不等式的解集为{x|0≤x≤1}.(16分)
点评:本题考查函数的性质,利用奇偶性求函数的解析式以及用单调性与奇偶性相结合解抽象不等式,在解抽象不等式时一定要注意转化的等价,别漏了条件,这是本题易错的地方.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案