【题目】已知函数
,其中
.
(1)当
时,求曲线
在点
处的切线方程;
(2)记
的导函数为
,若不等式
在区间
上恒成立,求
的取值范围;
(3)设函数
,
是函数
的导函数,若
存在两个极值点
,
,且满足
,求实数
的取值范围.
【答案】(1)
(2)
(3) ![]()
【解析】
(Ⅰ)当
时,
,
(1)
.
,可得
(1)
.利用点斜式即可得出切线方程.
(Ⅱ)
,
.不等式
,化为:
.令
在
上恒成立,
(1)
.可得
在
上恒成立,化为:
即可得出.
(Ⅲ)根据
可得
和
关于x的函数表达式,根据
存在两个极值点
,
,可得
=0在
上有两个不等实数根
,
.因此
,得出a的取值范围.并根据
,
满足
,代入简化,利用导数研究其单调性即可得出结果.
解:(Ⅰ)当
时,
,
(1)
.
,
(1)
.
曲线
在点(1,
)处的切线方程为:
,化为:
.
(Ⅱ)
,
.
不等式
,即
,化为:
.
令
在
上恒成立,
(1)
.
在
上恒成立,化为:
.
的取值范围是
.
(Ⅲ)设函数
,
,
.
存在两个极值点
,
,
在
上有两个不等实数根
,
.
因此
,且
,
.
解得
.
,
,满足
,
.
化为:
.
,
.
化为:
,
令
(a)
,
,
(1)
.
,
(a)在
上单调递增,
.
实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请你设计一个包装盒,如图所示,
是边长为
的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点
,正好形成一个正四棱柱形状的包装盒,
在
上,是被切去的一个等腰直角三角形斜边的两个端点,设
(
).
![]()
(1)某广告商要求包装盒的侧面积![]()
最大,试问
应取何值?
(2)某厂商要求包装盒的容积
最大,试问
应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小赵和小王约定在早上
至
之间到某公交站搭乘公交车去上学,已知在这段时间内,共有
班公交车到达该站,到站的时间分别为
,
,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
市场占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用线性回归模型拟合
与
之间的关系吗?如果能,请求出
关于
的线性回归方程,如果不能,请说明理由;
(2)公司决定再采购
两款车扩大市场,
两款车各100辆的资料如表:
车型 | 报废年限(年) | 合计 | 成本 | |||
1 | 2 | 3 | 4 | |||
| 10 | 30 | 40 | 20 | 100 | 1000元/辆 |
| 15 | 40 | 35 | 10 | 100 | 800元/辆 |
平均每辆车每年可为公司带来收入
元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?
参考数据:
,
,
,
.
参考公式:相关系数
;
回归直线方程为
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积 | 1 | 2 | 3 | 4 | 5 |
管理时间 | 8 | 10 | 13 | 25 | 24 |
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相关系数
的大小,并判断管理时间
与土地使用面积
是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为
,求
的分布列及数学期望。
参考公式:
![]()
![]()
其中
。临界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考数据:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com