精英家教网 > 高中数学 > 题目详情
6.已知复数z=$\frac{(1+i)^{3}}{(1-i)^{2}}$(其中i为虚数单位),则z的虚部为(  )
A.-1B.1C.-iD.i

分析 化简已知复数,由复数的基本概念可得虚部.

解答 解:z=$\frac{(1+i)^{3}}{(1-i)^{2}}$=$\frac{(1+i)•2i}{-2i}$=-1-i,
则z的虚部为-1,
故选:A

点评 本题考查复数的代数形式的乘除运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x+1)ex-$\frac{1}{2}{x^2}$-ax(a∈R,e是自然对数的底数)在(0,f(0))处的切线与x轴平行.
(1)求函数f(x)的单调递增区间;
(2)设g(x)=(ex+2m-2)x-$\frac{1}{2}{x^2}$-n,若?x∈R,不等式f(x)≥g(x)恒成立,求m-$\frac{n}{2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过直线y=x+1上的点P作圆C:(x-1)2+(y-6)2=2的两条切线l1,l2,当直线l1,l2关于直线y=x+1对称时,|PC|=(  )
A.3B.2$\sqrt{2}$C.1+$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={1,2},N={2,3,4},若P=M∪N,则P的子集个数为(  )
A.14B.15C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7cm,腰长为2$\sqrt{2}$cm,当一条垂直于底边BC(垂足为F)的直线l从B点开始由左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x(0≤x≤7),左边部分的面积为y,求y与x之间的函数关系式,画出程序框图,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(x-z,1),$\overrightarrow{b}$=(2,y+z),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,若实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,则z的最大值为(  )
A.$\frac{21}{2}$B.7C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=ex(x-b)(b∈R).若存在$x∈[{\frac{1}{2},2}]$,使得f(x)+xf'(x)>0,则实数b的取值范围是(-∞,$\frac{8}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=lnx+a(1-x),当f(x)有最大值,且最大值大于2a-2时,则a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,则z=x+2y的最大值为5.

查看答案和解析>>

同步练习册答案