精英家教网 > 高中数学 > 题目详情
(2011•洛阳二模)已知抛物线y2=4x的焦点为F,过F的直线与该抛物线相交于A(x1,y1),B(x2,y2)两点,则
y
2
1
+
y
2
2
的最小值是(  )
分析:由抛物线的方程求出其焦点坐标,设出过焦点的直线方程为x=my+1,和抛物线方程联立后利用根与系数关系求出两个交点的纵坐标的和与积,把要求的代数式配方后代入根与系数关系得答案.
解答:解:由题意得:焦点F为(1,0)
设直线AB的方程为x=my+1,与抛物线y2=4x联立得:
y2-4my-4=0
△=16m2+16>0.
应用韦达定理:
y1+y2=4m,y1y2=-4
y
2
1
+
y
2
2
=(y1+y2)2-2y1y2=16m2+8≥8.
∴当且仅当m=0时,
y
2
1
+
y
2
2
的值最小,最小值为8.
故选B.
点评:本题考查了直线与圆锥曲线的关系,训练了一元二次方程的根与系数关系的应用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)的定义域为R,f(x)=
x,0≤x≤1
(
1
2
)x-1,-1≤x<0.
且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,3]上函数g(x)=f(x)-mx-m恰有四个不同零点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)曲线y=x2ex+2x+1在点P(0,1)处的切线与x轴交点的横坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知函数f(x)=(ax2-2x+a)e-x
(I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=-
f′(x)
e-x
-a-2,h(x)=
1
2
x2-2x-lnx
,若x>l时总有g(x)<h(x),求实数c范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)从8名女生,4名男生中选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为
112
112
. (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)=|2x+1|-|x-2|.
(1)若关于x的不等式a≥f(x)存在实数解,求实数a的取值范围;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案