精英家教网 > 高中数学 > 题目详情
18.下列命题中正确的序号是①②③⑤
①已知随机变量ξ服从正态分布N(0,σ2),且P(-2≤ξ≤2)=0.9,则P(ξ>2)=0.05;
②某学生在最近的15次数学测验中有5次不及格.按照这个成绩,他在接下来的6次测验中,恰好前4次及格的概率为($\frac{2}{3}$)4($\frac{1}{3}$)2
③设a,b∈R,“a=0”是“复数a+bi是纯虚数”的必要不充分条件;
④某个命题与正整数有关,若当n=k(k∈N*)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得当n=6时,该命题不成立;
⑤曲线y=x2-1与直线x=2,y=0所围成的区域的面积为$\frac{4}{3}$.

分析 ①根据正态分布的对称性,求出P(ξ>2),进行判断;
②根据相互独立事件概率计算公式,求出他在接下来的6次测验中,恰好前4次及格的概率,进行判断;
③根据复数的概念以及充分条件和必要条件的定义进行判断;
④根据命题的推理关系进行判断;
⑤根据积分的几何意义进行求解.

解答 解:①已知随机变量ξ服从正态分布N(0,σ2),且P(-2≤ξ≤2)=0.9,则P(0≤ξ≤2)=0.45,则P(ξ>2)=0.5-0.45=0.05;故①正确,
②某学生在最近的15次数学测验中有5次不及格,故他每次考试及格的概率P=$\frac{15-5}{15}$=$\frac{2}{3}$,不及格的概率P=$\frac{5}{15}$=$\frac{1}{3}$,
故按照这个成绩,他在接下来的6次测验中,恰好前4次及格的概率为($\frac{2}{3}$)4($\frac{1}{3}$)2,故②正确;
③设a,b∈R,若a=0,则a+bi=bi,不一定是纯虚数,即充分性不成立,反之,若复数a+bi是纯虚数,则a=0且b≠0,则必要性成立,
即“a=0”是“复数a+bi是纯虚数”的必要不充分条件,故③正确,
④当n=5时如果命题成立,则推得当n=6时,命题也成立,但如果当n=5时该命题不成立,则无法推得当n=6时,该命题是否成立,故④错误;
⑤由曲线y=x2-1与直线x=2,y=0所围成的区域的面积为:${∫}_{1}^{2}({x}^{2}-1)dx$=$(\frac{1}{3}{x}^{3}-x){|}_{1}^{2}$=$\frac{4}{3}$;故⑤正确,
故答案为:①②③⑤

点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$无最大值,则实数a的取值范围是(  )
A.(-1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若两直线l1:x+2y-1=0,l2:mx-y+2m=0互相平行,则常数m等于(  )
A.-$\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线y=x+1与直线x=1的夹角大小为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.${∫}_{0}^{\frac{π}{2}}$(3x-sinx)dx的值为(  )
A.$\frac{{π}^{2}}{4}$+1B.$\frac{{π}^{2}}{4}$-1C.$\frac{3{π}^{2}}{8}$-1D.$\frac{3{π}^{2}}{8}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(3)=(  )
A.$\frac{1}{3}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数246810
售价16139.574.5
(1)试求y关于x的回归直线方程;(参考公式:$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a$=y-$\hat b\overline x$)
(2)已知每辆该型号汽车的收购价格为w=0.01x3-0.09x2-1.45x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?(利润=售价-收购价)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{bn}是等比数列,b9是1和3的等差数列中项,则b2b16=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P是线段EF上运动,设平面PAB与平面ADE成锐角二面角为θ,试求θ的最小值.

查看答案和解析>>

同步练习册答案