精英家教网 > 高中数学 > 题目详情
2.已知F1,F2是椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左右两个焦点,过F2的直线l交椭圆于A,B两点,若△ABF1的面积$\frac{{12\sqrt{2}}}{7}$.求直线l的方程.

分析 设A(x1,y1),B(x2,y2),对直线AB的斜率分类讨论:当AB⊥x轴时,直接验证即可.当直线AB的斜率存在时,设直线AB的方程为:my=x-1,与椭圆方程联立化为(4+3m2)y2+6my-9=0,利用根与系数的关系可得:|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,|F1F2|=2,再利用${S}_{△AB{F}_{1}}$=$\frac{1}{2}|{y}_{1}-{y}_{2}||{F}_{1}{F}_{2}|$解出即可.

解答 解:∵$c=\sqrt{{a}^{2}-{b}^{2}}$=1,∴F1(-1,0),F2(1,0),
设A(x1,y1),B(x2,y2),
①当AB⊥x轴时,把x=1代入椭圆方程可得:$\frac{{y}^{2}}{3}=\frac{3}{4}$,解得$y=±\frac{3}{2}$,
∴|AB|=3,
∴${S}_{△AB{F}_{1}}$=$\frac{1}{2}|AB||{F}_{1}{F}_{2}|$=$\frac{1}{2}×3×2$=3,不符合题意,舍去.
②当直线AB的斜率存在时,设直线AB的方程为:my=x-1,联立$\left\{\begin{array}{l}{my=x-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,
化为(4+3m2)y2+6my-9=0,
∴y1+y2=$\frac{-6m}{4+3{m}^{2}}$,${y}_{1}{y}_{2}=\frac{-9}{4+3{m}^{2}}$,
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{-6m}{4+3{m}^{2}})^{2}-\frac{4×(-9)}{4+3{m}^{2}}}$=$\frac{12\sqrt{1+{m}^{2}}}{4+3{m}^{2}}$,
|F1F2|=2
∴${S}_{△AB{F}_{1}}$=$\frac{1}{2}|{y}_{1}-{y}_{2}||{F}_{1}{F}_{2}|$=$\frac{1}{2}×2×\frac{12\sqrt{1+{m}^{2}}}{4+3{m}^{2}}$=$\frac{12\sqrt{2}}{7}$,
化为18m4-m2-17=0,
解得m2=1,∴m=±1.
∴直线l的方程为:±y=x-1.

点评 本题主要考查了直线与抛物线相交问题弦长问题、三角形的面积计算公式,考查了分类讨论思想方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知抛物线x2=ay(a≠0)在x=1处的切线的倾斜角为45°,则该抛物线的焦点坐标为(  )
A.(0,1)B.(0,$\frac{1}{2}$)C.(0,-1)D.(0,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若将函数y=2sin(4x+φ)的图象向右平移$\frac{π}{6}$个单位,得到的图象关于y轴对称,则|ϕ|的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{5}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PB的中点.
(1)求证:PD∥平面ACE;
(2)求证:PA⊥CE;
(3)在线段PC上是否存在一点F,使得BF⊥平面PAC?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P在曲线y=$\frac{4}{{(2}^{x}+1)ln2}$上,α为曲线在点P处的切线的倾斜角,则α的取值范围是.
A.[0,$\frac{π}{4}$)B.[$\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{2}$,$\frac{3}{4}$π]D.[$\frac{3}{4}$π,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设不等式组$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域为M,在圆x2+y2=4内随机取一点P,则点P落在M内的概率为(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与直线l:4x-5y+40=0,求两曲线交点的个数.

查看答案和解析>>

同步练习册答案