精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(2x+
π
3
),则下列结论正确的是(  )
A、f(x)的图象关于直线x=
π
3
对称
B、f(x)的图象关于点(
π
4
,0)对称
C、f(x)的最小正周期为π
D、f(x)在[0,
π
6
]上为增函数
分析:直接由周期公式求周期,分别把x=
π
3
x=
π
4
代入验证判断选项A和B,由正弦型复合函数的单调性判断选项D.
解答:解:由函数f(x)=sin(2x+
π
3
),可得该函数的最小正周期为π,∴选项C正确;
x=
π
3
时,f(x)=sin(2×
π
3
+
π
3
)=0,∴f(x)的图象不关于直线x=
π
3
对称,∴选项A不正确;
x=
π
4
时,f(x)=sin(2×
π
4
+
π
3
)=
1
2
,∴f(x)的图象不关于点(
π
4
,0)对称,∴选项B不正确;
-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ
,k∈Z.得-
5
12
π+kπ≤x≤
π
12
+kπ,k∈Z

取k=0,可知f(x)在[-
5
12
π,
π
12
]
上为增函数,x超过
π
12
时递减,∴选项D不正确.
故选:C.
点评:本题考查了y=Asin(ωx+φ)型函数的性质,函数的对称轴,就是通过函数最值点的直线,对称中心是函数图象与x轴的交点,该题是中低档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案