精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,为等腰直角三角形,为等边三角形,其中OBC中点,且.

(1)求证:平面平面PBC;

(2)若平面EBC,其中EAP上的点,求CE与平面ABC所成角的正弦值.

【答案】(1)证明见解析;(2).

【解析】

1)由题意可得,,利用线面垂直的判定定理证出平面PAO,从而得证.

2)作PH垂直于平面ABC,垂足为H,由(1)知,点H在直线AO上,以A为原点,ACx轴,ABy轴,以过A点与平面ABC垂直的直线为z轴建立空间直角坐标系,求出以及平面ABC的一个法向量,利用空间向量的数量积即可求解.

(1) 证明:由题可知,,,且,

平面PAO,又平面PBC,因此平面平面PBC.

(2)作PH垂直于平面ABC,垂足为H,由(1)知,点H在直线AO上.

如图,以A为原点,ACx轴,ABy轴,以过A点与平面ABC垂直的直线为z轴建立空间直角坐标系,可得如下坐标:,,,,

P点坐标为,利用,,可得.从.

因为EAP上的点,故存在实数,使得,点E坐标可设为,

平面EBC知,,得,

从而,取平面ABC的一个法向量.

CE与平面ABC所成角的为,.

CE与平面ABC所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为2的正方形,的中点,点上,平面的延长线上,且.

(1)证明:平面.

(2)过点的平行线,与直线相交于点,点的中点,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,且平面平面.

1)确定的位置(需要说明理由),并证明:平面平面.

2)与侧面平行的平面与棱分别交于,求四面体的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.

1)若该高中学校有2000名在校学生,编号分别为0001000200032000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)

2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出31档,22档,13档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如图:

专家

A

B

C

D

E

评分

9.6

9.5

9.6

8.9

9.7

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;

(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;

(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数作为该选手的最终得分,方案二:分别计算专家评分的平均数和观众评分的平均数,用作为该选手最终得分.请直接写出的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥平面.

1)求证:平面平面

2)当时,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆柱底面半径为1,高为是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.

1)求曲线的长度;

2)当时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

1)求实数的取值范围;

2)若,点,求的值.

查看答案和解析>>

同步练习册答案