精英家教网 > 高中数学 > 题目详情
18.已知全集U={-2,-1,0,1,2,3},M={-1,0,1,3},N={-2,0,2,3},则(∁UM)∩N为{-2,2}.

分析 根据补集与交集的定义,进行计算即可.

解答 解:全集U={-2,-1,0,1,2,3},M={-1,0,1,3},N={-2,0,2,3},
∴∁UM={-2,2},
∴(∁UM)∩N={-2,2}.
故答案为:{-2,2}.

点评 本题考查了交集与补集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.f(x)=(2-a2)x+a在区间[0,1]上恒正,则 a的取值范围为(  )
A.a>0B.$0<a<\sqrt{2}$C.0<a<2D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在正四棱柱ABCD-A1B1C1D1中,底面边长为2$\sqrt{2}$,侧棱长为4,E、F分别
为棱AB、BC的中点,EF∩BD=G;
(1)求直线D1E与平面D1DBB1所成角的大小;
(2)求点D1到平面B1EF的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且b=2,c=3,△ABC的面积为$\frac{3\sqrt{3}}{2}$,又$\overrightarrow{AC}$=2$\overrightarrow{CD}$,∠CBD=θ.
(1)求a,A,cosB;
(2)求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求极限$\underset{lim}{n→∞}$n($\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\int_0^1$($\sqrt{1-{x^2}}}$+2x)dx=$\frac{π+4}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,则不等式f(x)≤f(1)的解集是(  )
A.[-3,1]∪[3,+∞)B.[-3,1]∪[2,+∞)C.[-1,1]∪[3,+∞)D.(-∞,-3]∪[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.研究问题:“已知关于x的不等式ax2-bx+c>0,令y=$\frac{1}{x}$,则y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集为($\frac{1}{2}$,1)”.类比上述解法,已知关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-2,-1)∪(2,3),则关于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集为(-$\frac{1}{2}$,-$\frac{1}{3}$)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中图象相同的是(  )
A.y=x与y=$\sqrt{{x}^{2}}$B.y=x-1与y=$\frac{{x}^{2}-1}{x+1}$
C.y=x2与y=2x2D.y=x2-4x+6与y=(x-2)2+2

查看答案和解析>>

同步练习册答案