分析 由于$\frac{n}{{n}^{2}+n}$<$\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$<$\frac{n}{{n}^{2}+1}$,可得n•$\frac{n}{{n}^{2}+n}$<n•($\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$)<$\frac{n}{{n}^{2}+1}$•n,利用“两边夹”定理即可得出.
解答 解:∵$\frac{n}{{n}^{2}+n}$<$\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$<$\frac{n}{{n}^{2}+1}$,
∴n•$\frac{n}{{n}^{2}+n}$<n•($\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$)<$\frac{n}{{n}^{2}+1}$•n,
而$\underset{lim}{n→∞}\frac{{n}^{2}}{{n}^{2}+n}$=$\underset{lim}{n→∞}\frac{{n}^{2}}{{n}^{2}+n}$=1
原式=1.
点评 本题考查了“放缩法”、不等式的性质、利用“两边夹”定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $8\sqrt{5}$ | B. | $4\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | (-∞,1) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com