精英家教网 > 高中数学 > 题目详情
5.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,$\overrightarrow a$•$\overrightarrow b$=-1,则$\overrightarrow a$,$\overrightarrow b$的夹角大小为$\frac{2π}{3}$.

分析 根据平面向量数量积的定义求出夹角即可.

解答 解:∵|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,
且$\overrightarrow a$•$\overrightarrow b$=-1,
∴|$\overrightarrow{a}$|×|$\overrightarrow{b}$|×cosθ=2×1×cosθ=-1,
解得cosθ=-$\frac{1}{2}$;
又θ∈[0,π],
∴θ=$\frac{2π}{3}$,
即$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查了平面向量的数量积与夹角的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinx-$\frac{2}{π}$x,x∈[0,$\frac{π}{2}$].
( I)求证:f(x)≥0;
( II)若m<$\frac{sinx}{x}$<n对一切x∈(0,$\frac{π}{2}$)恒成立,求m和n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2,DE=1.
(1)求异面直线EF与BC所成角的大小;
(2)若二面角A-BF-D的平面角的余弦值为$\frac{1}{3}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求极限$\underset{lim}{n→∞}$n($\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,a1=4,a2=6,且an+2=an+1-an,则a2016=(  )
A.4B.6C.-6D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,则不等式f(x)≤f(1)的解集是(  )
A.[-3,1]∪[3,+∞)B.[-3,1]∪[2,+∞)C.[-1,1]∪[3,+∞)D.(-∞,-3]∪[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知y=2x+1与3x2-y2=1交于A,B两点,求A,B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知椭圆$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0)的离心率e的值为$\frac{1}{2}$,右准线方程为x=4.如图所示,椭圆C左右顶点分别为A,B,过右焦点F的直线交椭圆C于M,N,直线AM,MB交于点P.
(1)求椭圆的标准方程;
(2)若点P(4,$3\sqrt{3}$),直线AN,BM的斜率分别为k1,k2,求$\frac{k_1}{k_2}$.
(3)求证点P在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个多面体的三视图和直观图如图所示,已知H,M,N分别是DE,AF,BC的中点.
 (1)求证:MN∥平面CDEF;
(2)求证:MN⊥AH;
(3)求多面体A-CDEF的体积.

查看答案和解析>>

同步练习册答案