精英家教网 > 高中数学 > 题目详情
17.已知y=2x+1与3x2-y2=1交于A,B两点,求A,B两点的距离.

分析 y=2x+1与3x2-y2=1联立可得x2+4x+2=0,利用弦长公式,即可得出结论.

解答 解:y=2x+1与3x2-y2=1联立可得x2+4x+2=0,
设A(x1,y1),B(x2,y2),∴x1+x2=-4,x1x2=2,
∴|AB|=$\sqrt{1+4}•\sqrt{{4}^{2}-4×2}$=2$\sqrt{10}$.

点评 本题考查直线与双曲线的位置关系,考查弦长公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知在平行四边形ABCD中,点M、N分别是BC、CD的中点,如果$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,那么向量$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.正方体ABCD-A1B1C1D1中,点E,F分别为BC,A1D1的中点.
(1)求证:平面A1B1E∥平面CDF;
(2)求平面DEB1F与平面ADD1A1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,$\overrightarrow a$•$\overrightarrow b$=-1,则$\overrightarrow a$,$\overrightarrow b$的夹角大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知全集U={-2,-1,0,1,2},集合A={-2,-1,1,2},则∁UA={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}{x}^{2},x≤1}\\{f(x-2)+\frac{1}{2},x>1}\end{array}\right.$若方程f(x)=a|x-1|,(a∈R)有且仅有两个不相等的实数解,则实数a的取值范围是a≤0或a=3-$\sqrt{7}$或$\frac{1}{8}≤a<\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}为等差数列,公差为d,且0<d<1,a5≠$\frac{kπ}{2}$(k∈Z),sin2a3+2sina5•cosa5=sin2a7,则数列{an}的公差为d的值为(  )
A.$\frac{π}{12}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1)(x>0)}\\{-{x}^{2}-2x(x≤0)}\end{array}\right.$,若函数g(x)=f(x)+m有三个零点,则实数m的范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设{an}是等比数列,公比q=2,Sn为{an}的前n项和,记Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,(n∈N*),设T${\;}_{{n}_{0}}$为数列{Tn}的最大项,则n0=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案