精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1)(x>0)}\\{-{x}^{2}-2x(x≤0)}\end{array}\right.$,若函数g(x)=f(x)+m有三个零点,则实数m的范围是(-1,0).

分析 令g(x)=f(x)+m=0,得-m=f(x),作出y=f(x)与y=-m的图象,要使函数g(x)=f(x)+m有3个零点,则y=f(x)与y=-m的图象有3个不同的交点,即可得出结论.

解答 解:令g(x)=f(x)+m=0,
得-m=f(x)
作出y=f(x)与y=-m的图象,
要使函数g(x)=f(x)+m有3个零点,
则y=f(x)与y=-m的图象有3个不同的交点,
所以0<-m<1,所以-1<m<0
故答案为:(-1,0).

点评 本题考查分段函数的运用,考查函数的零点,考查数形结合的数学思想,正确作出函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2,DE=1.
(1)求异面直线EF与BC所成角的大小;
(2)若二面角A-BF-D的平面角的余弦值为$\frac{1}{3}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知y=2x+1与3x2-y2=1交于A,B两点,求A,B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知椭圆$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0)的离心率e的值为$\frac{1}{2}$,右准线方程为x=4.如图所示,椭圆C左右顶点分别为A,B,过右焦点F的直线交椭圆C于M,N,直线AM,MB交于点P.
(1)求椭圆的标准方程;
(2)若点P(4,$3\sqrt{3}$),直线AN,BM的斜率分别为k1,k2,求$\frac{k_1}{k_2}$.
(3)求证点P在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2x+$\frac{a}{x}$(x>0,a>0)在x=2时取得最小值,则a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图为函数f(x)的图象,f′(x)为其导函数,则不等式$\frac{2x+3}{2f'(x)}<0$的解集为(  )
A.(1,+∞)B.(-∞,-$\frac{3}{2}$)∪(-1,1)C.(-∞,-$\frac{3}{2}$)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(1,2),则向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率是$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个多面体的三视图和直观图如图所示,已知H,M,N分别是DE,AF,BC的中点.
 (1)求证:MN∥平面CDEF;
(2)求证:MN⊥AH;
(3)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点A,B分别为圆M:x2+(y-3)2=1与圆N:(x-3)2+(y-8)2=4上的动点,点C在直线x+y=0上运动,则|AC|+|BC|的最小值为7.

查看答案和解析>>

同步练习册答案