| A. | (1,+∞) | B. | (-∞,-$\frac{3}{2}$)∪(-1,1) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,-1)∪(1,+∞) |
分析 先由不等式$\frac{2x+3}{2f'(x)}<0$,分成2x+3>0且f'(x)<0或2x+3<0且f'(x)>0两种情况分别讨论即可.
解答 解:当2x+3>0,即x>-$\frac{3}{2}$时,f'(x)<0,
即找在f(x)在($-\frac{3}{2}$,+∞)上的减区间,由图象得,-1<x<1;
当2x+3<0时,即x<-$\frac{3}{2}$时,f'(x)>0,
即找f(x)在(-∞,-$\frac{3}{2}$)上的增区间,由图象得,x<-$\frac{3}{2}$.
故不等式解集为(-∞,-$\frac{3}{2}$)∪(-1,1).
故选:B.
点评 高中阶段,导数是研究函数性质,如单调性,最值性的重要工具.本题中,也是根据图象,将函数的单调性转化成导函数的正负.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | (-∞,1) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com