精英家教网 > 高中数学 > 题目详情
16.若点A和点B分别是函数f(x)和g(x)的图象上任意一点,定义两点间的距离|AB|的最小值为两函数的“亲密度”,则函数f(x)=$\left\{{\begin{array}{l}{{e^x},-2≤x<-1}\\{e•f({x-1}),x≥-1}\end{array}}$与g(x)=lnx的“亲密度”为$\sqrt{2}$.

分析 函数y=ex和函数y=lnx互为反函数,关于直线y=x对称.设直线y=x+t与y=ex相切于点P(a,b),利用导数的几何意义求出切点P,利用点到直线的距离公式即可得出.

解答 解:由题意,-1≤x<0,-2≤x-1<-1,f(x)=ef(x-1)=ex
0≤x<1,-1≤x-1<0,f(x)=ef(x-1)=ex

∴x≥-2时,f(x)=ex
函数y=ex和函数y=lnx互为反函数,关于直线y=x对称.由图象可知:当f(x)在点A处的切线和g(x)在点B处的切线都与y=x平行时,|AB|最小.设A(x1,y1),B(x2,y2),则y1=${e}^{{x}_{1}}$,y2=lnx2,f′(x)=ex,k1=${e}^{{x}_{1}}$=1,可得x1=0,A(0,1);g′(x)=$\frac{1}{x}$,k2=$\frac{1}{{x}_{2}}$=1,则x2=1,B(1,0)
设直线y=x+t与y=lnx相切于点P(a,b),|AB|min=$\sqrt{2}$
故答案为:$\sqrt{2}$.

点评 本题考查了反函数的性质、导数的几何意义、切线方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且b=2,c=3,△ABC的面积为$\frac{3\sqrt{3}}{2}$,又$\overrightarrow{AC}$=2$\overrightarrow{CD}$,∠CBD=θ.
(1)求a,A,cosB;
(2)求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.研究问题:“已知关于x的不等式ax2-bx+c>0,令y=$\frac{1}{x}$,则y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集为($\frac{1}{2}$,1)”.类比上述解法,已知关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-2,-1)∪(2,3),则关于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集为(-$\frac{1}{2}$,-$\frac{1}{3}$)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数过点(2,4),则f(3)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图为函数f(x)的图象,f′(x)为其导函数,则不等式$\frac{2x+3}{2f'(x)}<0$的解集为(  )
A.(1,+∞)B.(-∞,-$\frac{3}{2}$)∪(-1,1)C.(-∞,-$\frac{3}{2}$)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中图象相同的是(  )
A.y=x与y=$\sqrt{{x}^{2}}$B.y=x-1与y=$\frac{{x}^{2}-1}{x+1}$
C.y=x2与y=2x2D.y=x2-4x+6与y=(x-2)2+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=ax2-bx+2.
(1)若不等式f(x)>0的解集为{x|x>2或x<1},求a和b的值;
(2)若b=2a+1,对任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为(  )
A.10B.20C.30D.40

查看答案和解析>>

同步练习册答案