精英家教网 > 高中数学 > 题目详情
1.已知f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

分析 (1)利用诱导公式和同角三角函数关系进行化简;
(2)根据α是第三象限角和诱导公式求得sinα=-$\frac{1}{5}$,cosα=-$\frac{2\sqrt{6}}{5}$,代入求值即可;
(3)先利用诱导公式把函数解析式化简整理,再把α=-1860°代入利用诱导公式求得答案.

解答 解:(1)f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$
=$\frac{sinα•cosα•(-tanα)•(-tanα)}{sinα}$
=cosα•$\frac{si{n}^{2}α}{co{s}^{2}α}$
=$\frac{si{n}^{2}α}{cosα}$
=sinαtanα;
(2)由cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,得
-sinα=$\frac{1}{5}$,
则sinα=-$\frac{1}{5}$,
∵α是第三象限角,
∴cosα=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=$\frac{si{n}^{2}α}{cosα}$=-$\frac{\frac{1}{25}}{\frac{2\sqrt{6}}{5}}$=-$\frac{\sqrt{6}}{60}$;
(3)f(-1860°)=sin(-1860°)tan(-1860°)
=sin(1860°)tan(1860°)
=sin(-1860°)tan(-1860°)
=sin(10π+60°)tan(10π+60°)
=sin60°tan60°
=$\frac{\sqrt{3}}{2}$×$\sqrt{3}$
=$\frac{3}{2}$.

点评 本题主要考查了三角函数的化简求值,诱导公式的应用.“一全,二正弦,三切,四余弦”是记忆象限角符号的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知焦点在x轴上的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1,其离心率为$\frac{1}{2}$,过椭圆左焦点F1与上顶点B的直线为l0
(1)求椭圆的方程及直线l0的方程;
(2)直线l:y=kx(k≠0)与椭圆C交于M,N两点,点P是椭圆上异于M,N的一点.
①求证:当直线PM,PN存在斜率时,两直线的斜率之积为定值,即kPM•kPN为定值;
②当直线l与点P满足什么条件时,△PMN有最大面积?并求此最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且满足4nSn=(n+1)2an(n∈N*).a1=1
(Ⅰ)求an
(Ⅱ)设bn=$\frac{n}{{a}_{n}}$,数列{bn}的前n项和为Tn,求证:Tn$<\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanθ=2,计算下列各值.
(1)$\frac{sinα+\sqrt{2}cosα}{sinα-\sqrt{2}cosα}$.
(2)sin2θ+sin θcos θ-2cos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若点A和点B分别是函数f(x)和g(x)的图象上任意一点,定义两点间的距离|AB|的最小值为两函数的“亲密度”,则函数f(x)=$\left\{{\begin{array}{l}{{e^x},-2≤x<-1}\\{e•f({x-1}),x≥-1}\end{array}}$与g(x)=lnx的“亲密度”为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x+1)=2x-1,则f(x)=2x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的三个顶点为A(4,0),B(8,10),C(0,6).求过点A且平行于BC的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不同直线m、n和不同平面α、β.给出下列命题:
①$\left.\begin{array}{l}{α∥β}\\{m?α}\end{array}\right\}$⇒m∥β;       ②$\left.\begin{array}{l}{m∥n}\\{m∥β}\end{array}\right\}$⇒n∥β;
③$\left.\begin{array}{l}{m?α}\\{n?β}\end{array}\right\}$⇒m,n异面;  ④$\left.\begin{array}{l}{α⊥β}\\{n∥α}\end{array}\right\}$⇒n⊥β.
其中假命题的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:0.027${\;}^{\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0-(log62+log63)=$\frac{449}{30}$.

查看答案和解析>>

同步练习册答案