精英家教网 > 高中数学 > 题目详情
6.已知f(x+1)=2x-1,则f(x)=2x-3.

分析 直接利用配凑法求解函数的解析式即可.

解答 解:f(x+1)=2x-1=2(x+1)-3,则f(x)=2x-3.
故答案为:2x-3.

点评 本题考查函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设数列{an}是集合{3s+3t|0≤s<t,且s,t∈Z}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{an}中各项按照上小下大,左小右大的原则排成如图等腰直角三角形数表,a200的值为(  )
A.39+319B.310+319C.319+320D.310+320

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,矩形长为6,为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为100颗,以此实验数据为依据可以估计出椭圆的面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等轴双曲线过点(2,1),则双曲线的焦点坐标为(  )
A.$({±\sqrt{3},0})$B.$({0,±\sqrt{3}})$C.$({±\sqrt{6},0})$D.$({0,±\sqrt{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线3x-2y=4的截距式方程是$\frac{x}{\frac{4}{3}}+\frac{y}{-2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用数学归纳法证明等式:12-22+32+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数246810
售价16139.574.5
(Ⅰ)试求y关于x的回归直线方程;
(Ⅱ)已知每辆该型号汽车的收购价格为w=0.05x2-1.75x+17.2万元,根据(Ⅰ)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润z最大.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)是R上的奇函数,f(1)=1,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(2016)+f(2017)=1.

查看答案和解析>>

同步练习册答案