15£®¾­ÏúÉÌСÍõ¶ÔÆäËù¾­ÓªµÄijһÐͺŶþÊÖÆû³µµÄʹÓÃÄêÊýx£¨0£¼x¡Ü10£©ÓëÏúÊÛ¼Û¸ñy£¨µ¥Î»£ºÍòÔª/Á¾£©½øÐÐÕûÀí£¬µÃµ½Èç±íµÄ¶ÔÓ¦Êý¾Ý£º
ʹÓÃÄêÊý246810
ÊÛ¼Û16139.574.5
£¨¢ñ£©ÊÔÇóy¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³Ì£»
£¨¢ò£©ÒÑ֪ÿÁ¾¸ÃÐÍºÅÆû³µµÄÊÕ¹º¼Û¸ñΪw=0.05x2-1.75x+17.2ÍòÔª£¬¸ù¾Ý£¨¢ñ£©ÖÐËùÇóµÄ»Ø¹é·½³Ì£¬Ô¤²âxΪºÎֵʱ£¬Ð¡ÍõÏúÊÛÒ»Á¾¸ÃÐÍºÅÆû³µËù»ñµÃµÄÀûÈóz×î´ó£®
¸½£º»Ø¹éÖ±ÏßµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®

·ÖÎö £¨¢ñ£©ÓɱíÖÐÊý¾Ý¼ÆËã$\overline{x}=\frac{1}{5}$¡Á£¨2+4+6+8+10£©=6£¬$\overline{y}=\frac{1}{5}$¡Á£¨16+13+9.5+7+4.5£©=10£¬Çó³ö»Ø¹éϵÊý£¬¼´¿Éд³ö»Ø¹éÖ±Ïß·½³Ì£»
£¨¢ò£©Ð´³öÀûÈóº¯Êýz=y-w£¬ÀûÓöþ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊÇó³öx=3ʱzÈ¡µÃ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓɱíÖÐÊý¾ÝµÃ£¬$\overline{x}=\frac{1}{5}$¡Á£¨2+4+6+8+10£©=6£¬
$\overline{y}=\frac{1}{5}$¡Á£¨16+13+9.5+7+4.5£©=10£¬
ÓÉ×îС¶þ³Ë·¨ÇóµÃ$\stackrel{¡Ä}{b}$=$\frac{2¡Á16+4¡Á13+6¡Á9.5+8¡Á7+10¡Á4.5-5¡Á6¡Á10}{4+16+36+64+100-5¡Á{6}^{2}}$=-1.45£¬
$\stackrel{¡Ä}{a}$=10-£¨-1.45£©¡Á6=18.7£¬
ËùÒÔy¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=-1.45x+18.7£»
£¨¢ò£©z=-1.45x+18.7-£¨0.05x2-1.75x+17.2£©
=-0.05x2+0.3x+1.5
=-0.05£¨x-3£©2+1.95£¬
ËùÒÔÔ¤²âµ±x=3ʱ£¬ÏúÊÛÀûÈózÈ¡µÃ×î´óÖµ£®

µãÆÀ ±¾Ì⿼²éÁ˻عéÖ±Ïß·½³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨ÎĿƣ©Èçͼ£¬ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãF1£¬F2£¬ÔÚxÖáÉÏ£¬³¤ÖáA1A2µÄ³¤Îª4£¬xÖáÉÏÒ»µãM£¨${-\frac{a^2}{c}£¬0}$£©£¬$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ý×ó½¹µãF1ÇÒбÂÊΪ1µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚC¡¢DÁ½µã£¬Çó¡÷OCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªf£¨x+1£©=2x-1£¬Ôòf£¨x£©=2x-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®º¯Êýf£¨x£©=lg£¨x2-2x-3£©µÄ¶¨ÒåÓòΪ¼¯ºÏA£¬º¯Êýg£¨x£©=2x£¨x¡Ü3£©µÄÖµÓòΪ¼¯ºÏB£¬ÇóB¡É£¨∁RA£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®²»Í¬Ö±Ïßm¡¢nºÍ²»Í¬Æ½Ãæ¦Á¡¢¦Â£®¸ø³öÏÂÁÐÃüÌ⣺
¢Ù$\left.\begin{array}{l}{¦Á¡Î¦Â}\\{m?¦Á}\end{array}\right\}$⇒m¡Î¦Â£»       ¢Ú$\left.\begin{array}{l}{m¡În}\\{m¡Î¦Â}\end{array}\right\}$⇒n¡Î¦Â£»
¢Û$\left.\begin{array}{l}{m?¦Á}\\{n?¦Â}\end{array}\right\}$⇒m£¬nÒìÃæ£»  ¢Ü$\left.\begin{array}{l}{¦Á¡Í¦Â}\\{n¡Î¦Á}\end{array}\right\}$⇒n¡Í¦Â£®
ÆäÖмÙÃüÌâµÄ¸öÊýΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=3+tcos¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬ÇúÏßCµÄ·½³Ì¦Ñ=8sin¦È£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±êϵ·½³Ì£»
£¨2£©ÈôµãP£¨1£¬3£©£¬ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA£¬B£¬Çó|PA|+|PB|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¡°Èôx=0»òx=1£¬Ôòx2-x=0¡±µÄ·ñÃüÌâΪ£¨¡¡¡¡£©
A£®Èôx=0»òx=1£¬Ôòx2-x¡Ù0B£®Èôx2-x=0£¬Ôòx=0»òx=1
C£®Èôx¡Ù0»òx¡Ù1£¬Ôòx2-x¡Ù0D£®Èôx¡Ù0ÇÒx¡Ù1£¬Ôòx2-x¡Ù0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$£¨cos2x-sin2x£©+2sinxcosx
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Éèx¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬Çóf£¨x£©µÄÖµÓòºÍµ¥µ÷µÝ¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=log${\;}_{\frac{1}{2}}$£¨3x2-ax+5£©ÔÚ[-1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-8£¬-6]B£®£¨-8£¬-6]C£®£¨-¡Þ£¬-8£©¡È£¨-6£¬+¡Þ£©D£®£¨-¡Þ£¬-6]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸