精英家教网 > 高中数学 > 题目详情
5.(文科)如图,已知椭圆的中心在坐标原点,焦点F1,F2,在x轴上,长轴A1A2的长为4,x轴上一点M(${-\frac{a^2}{c},0}$),$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$.
(1)求椭圆的方程;
(2)过左焦点F1且斜率为1的直线l与椭圆相交于C、D两点,求△OCD的面积.

分析 (1)利用长轴A1A2的长为4,x轴上一点M(${-\frac{a^2}{c},0}$),$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$,建立方程组,求出a,b,即可求椭圆的方程;
(2)把直线l的方程代入椭圆的方程化简,利用根与系数的关系,求出|y1-y2|的值,即可求△OCD的面积.

解答 解:(1)设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),则|$\overrightarrow{M{A}_{1}}$|=$\frac{{a}^{2}}{c}$-a,|$\overrightarrow{{A}_{1}{F}_{1}}$|=a-c,
由题意$\left\{\begin{array}{l}{\frac{{a}^{2}}{c}-a=2(a-c)}\\{2a=4}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,∴a=2,b=$\sqrt{3}$,c=1,
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)由题意,直线l的方程为x-y+1=0,设C(x1,y1 ),D(x2,y2),
直线方程代入椭圆方程整理得7y2-6y-9=0,
∴y1+y2=$\frac{6}{7}$,y1y2=-$\frac{9}{7}$,
∴|y1-y2|=$\sqrt{(\frac{6}{7})^{2}+\frac{36}{7}}$=$\frac{12\sqrt{2}}{7}$,
∴S△OCD=$\frac{1}{2}×1×\frac{12\sqrt{2}}{7}$=$\frac{6\sqrt{2}}{7}$.

点评 本题考查椭圆的标准方程,以及椭圆的简单性质的应用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.确定 y=$\frac{x}{{x}^{2}+1}$的单调区间,并求函数的极大值、极小值、最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设数列{an}是集合{3s+3t|0≤s<t,且s,t∈Z}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{an}中各项按照上小下大,左小右大的原则排成如图等腰直角三角形数表,a200的值为(  )
A.39+319B.310+319C.319+320D.310+320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.A,B,C,D是空间不共面的四点,且满足$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,M为BC的中点,则△AMD是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:
(1)$\frac{1-co{s}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$=sinα+cosα;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(1+cos2α)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),则$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,矩形长为6,为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为100颗,以此实验数据为依据可以估计出椭圆的面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等轴双曲线过点(2,1),则双曲线的焦点坐标为(  )
A.$({±\sqrt{3},0})$B.$({0,±\sqrt{3}})$C.$({±\sqrt{6},0})$D.$({0,±\sqrt{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数246810
售价16139.574.5
(Ⅰ)试求y关于x的回归直线方程;
(Ⅱ)已知每辆该型号汽车的收购价格为w=0.05x2-1.75x+17.2万元,根据(Ⅰ)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润z最大.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案