精英家教网 > 高中数学 > 题目详情
10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),则$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

分析 an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),取分母化为:$({a}_{n}-1)^{2}$-$({a}_{n-1}-1)^{2}$=n.利用“累加求和”可得$({a}_{n}-1)^{2}$,再利用“裂项求和”方法即可得出.

解答 解:∵an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),
∴${a}_{n}^{2}-{a}_{n-1}^{2}$=n+2(an-an-1),
化为:$({a}_{n}-1)^{2}$-$({a}_{n-1}-1)^{2}$=n.
∴$({a}_{n}-1)^{2}$=[$({a}_{n}-1)^{2}$-$({a}_{n-1}-1)^{2}$]+[$({a}_{n-1}-1)^{2}$-$({a}_{n-2}-1)^{2}]$+…+$[({a}_{2}-1)^{2}-({a}_{1}-1)^{2}]$+$({a}_{1}-1)^{2}$
=n+(n-1)+…+2+1=$\frac{n(n+1)}{2}$.
∴$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.
故答案为:$\frac{2n}{n+1}$.

点评 本题考查了数列递推关系、“累加求和”方法、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知U=R,函数y=ln(1-x)的定义域为M,N={x|x2-x<0},则下列结论正确的是(  )
A.M∩N=MB.M∪(∁UN)=UC.M∩(∁UN)=∅D.M⊆∁UN

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知{an}为等差数列,Sn为其前n项和,若a1=6,a3+a5=0,则S6=(  )
A.6B.5C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知P是△ABC内的一点,且满足$\overrightarrow{PA}$+3$\overrightarrow{PB}$+5$\overrightarrow{PC}$=$\overrightarrow{0}$,记△ABP、△BCP、△ACP的面积依次为S1、S2、S3,则S1:S2:S3=5:1:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(文科)如图,已知椭圆的中心在坐标原点,焦点F1,F2,在x轴上,长轴A1A2的长为4,x轴上一点M(${-\frac{a^2}{c},0}$),$|{\overrightarrow{M{A_1}}}|$=$2|{\overrightarrow{{A_1}{F_1}}}|$.
(1)求椭圆的方程;
(2)过左焦点F1且斜率为1的直线l与椭圆相交于C、D两点,求△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上的奇函数,若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为1-2a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设实数x,y满足不等式组$\left\{\begin{array}{l}2x-y+1≥0\\ x+m≤0\\ y-m≥0\end{array}\right.$(m<0),目标函数z=x-2y的最大值为9,则实数m的是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取一个球,已知它不是黑球,试求它是黄球的概率.
(2)某个工厂的工人月收入服从正态分布N(500,202),该工厂共有1200名工人,试估计月收入在
440元以下和560元以上的工人大约有多少?
[注:P(μ-σ,μ+σ)=0.6826   P(μ-2σ,μ+σ)=0.9544   P(μ-3σ,μ+3σ)=0.9974].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=3+tcosα\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,曲线C的方程ρ=8sinθ.
(1)求曲线C的直角坐标系方程;
(2)若点P(1,3),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

同步练习册答案