分析 本题是一个等可能事件的概率,试验发生包含的事件是点数对(a,b)共有6×6对,不满足条件的事件向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线,即向量$\overrightarrow{m}$与向量$\overrightarrow{n}$共线时2a-b=0,即b=2a,共3种情况,进而根据对立事件概率减法公式,可得答案.
解答 解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是点数对(a,b)共有6×6=36对,
满足条件的事件是向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线,即2a-b≠0,
由满足2a-b=0的事件有(1,2),(2,4),(3,6)共3种,
故向量 $\overrightarrow{m}$与向量$\overrightarrow{n}$共线的概率为:$\frac{3}{36}$=$\frac{1}{12}$,
故向量 $\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率P=1-$\frac{1}{12}$=$\frac{11}{12}$,
故答案是:$\frac{11}{12}$.
点评 本题考查了列举法计算基本事件数及事件发生的概率,向量平行的充要条件,是向量与概率的综合应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | (-∞,1) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com