| A. | $\frac{π}{12}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
分析 推导出sin4d=1,由此能求出d.
解答 解:∵{an}为等差数列,公差为d,且0<d<1,a5≠$\frac{kπ}{2}$(k∈Z),
sin2a3+2sina5•cosa5=sin2a7,
∴2sina5cosa5=2sin$\frac{{a}_{3}+{a}_{7}}{2}$cos$\frac{{a}_{7}-{a}_{3}}{2}$-2cos$\frac{{a}_{3}+{a}_{7}}{2}$sin$\frac{{a}_{7}-{a}_{3}}{2}$=2sina5cos2d-2cosa5sin2d,
∴sin4d=1,
∴d=$\frac{π}{8}$.
故选:B.
点评 本题考查等差数列的公差的求法,是中档题,解题时要认真审题,注意积化和差公式和等差数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com