分析 如图所示,取BD的中点G,连接GD,GF,利用三角形中位线定理可得∠DGF或其补角为异面直线直线AB与CD所成的角,在△DGF中,利用余弦定理即可得出.
解答
解:如图所示,取BD的中点G,连接GD,GF,则GD∥AB,GF∥GF,
且GD=$\frac{1}{2}$AB=2,GF=$\frac{1}{2}$CD=1,
∴∠DGF或其补角为异面直线直线AB与CD所成的角.
在△DGF中,由余弦定理可得:cos∠DGF=$\frac{{2}^{2}+{1}^{2}-(\sqrt{7})^{2}}{2×2×1}$=-$\frac{1}{2}$.
∴∠DGF=120°.
∴异面直线直线AB与CD所成的角大小为60°.
故答案为:60°.
点评 本题考查了空间角、三角形中位线定理、余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (0,2] | C. | [1,2] | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com