分析 根据题意,算出圆M关于直线l对称的圆M'方程为(x+3)2+y2=1.当点P位于线段NM'上时,线段AB的长就是|AC|+|BC|的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出|AC|+|BC|的最小值.
解答
解:设圆C'是圆M:x2+(y-3)2=1关于直线x+y=0对称的圆
可得M'(-3,0),圆M'方程为(x+3)2+y2=1,
可得当点P位于线段NM'上时,线段AB长是圆N与圆M'上两个动点之间的距离最小值,
此时|AC|+|BC|的最小值为AB,
N(3,8),圆的半径R=2,
∵|NM'|=$\sqrt{(-3-3)^{2}+{8}^{2}}$=10,
可得|AB|=|NM'|-R-r=10-2-1=7
因此|AC|+|BC|的最小值为7,
故答案为7.
点评 本题给出直线l与两个定圆,求圆上两个点A、B与直线l上动点P的距离之和的最小值,着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com