分析 先判断f(x)的单调性,再计算f(2)=5,不等式转化为2a+1<2解出.
解答 解:设x1<x2,x1、x2∈R,则x2-x1>0,
∵当x>0时,f(x)>3,
∴f(x2-x1)>3,
∵f(x+y)=f(x)+f(y)-3,
∴f(x2)-f(x1)=f(x2-x1+x1)-f(x1)-3=f(x2-x1)+f(x1)-f(x1)-3>0,
∴f(x2)>f(x1),
∴f(x)在R上递增,
∵f(3)=f(2)+f(1)-3=f(1)+f(1)-3+f(1)-3=3f(1)-6=6,
∴f(1)=4,∴f(2)=5
∴f(2a+1)<5等价于2a+1<2.
a<$\frac{1}{2}$
故答案为:(-∞,$\frac{1}{2}$).
点评 本题考查抽象函数的性质,考查利用单调性解不等式,已知抽象函数的运算性质,常用“赋值法”,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | [2,+∞) | C. | (1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com