精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+3,f(3)=6,当x>0 时,f(x)>3,那么,当f(2a+1)<5时,实数a的取值范围是(-∞,$\frac{1}{2}$).

分析 先判断f(x)的单调性,再计算f(2)=5,不等式转化为2a+1<2解出.

解答 解:设x1<x2,x1、x2∈R,则x2-x1>0,
∵当x>0时,f(x)>3,
∴f(x2-x1)>3,
∵f(x+y)=f(x)+f(y)-3,
∴f(x2)-f(x1)=f(x2-x1+x1)-f(x1)-3=f(x2-x1)+f(x1)-f(x1)-3>0,
∴f(x2)>f(x1),
∴f(x)在R上递增,
∵f(3)=f(2)+f(1)-3=f(1)+f(1)-3+f(1)-3=3f(1)-6=6,
∴f(1)=4,∴f(2)=5
∴f(2a+1)<5等价于2a+1<2.
 a<$\frac{1}{2}$
故答案为:(-∞,$\frac{1}{2}$).

点评 本题考查抽象函数的性质,考查利用单调性解不等式,已知抽象函数的运算性质,常用“赋值法”,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知在四面体ABCD中,AB=4,CD=2,E、F分别是AD、BC的中点,且EF=$\sqrt{7}$,则直线AB与CD所成的角大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等比数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=(  )
A.81B.54C.45D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知空间四边形OABC,点M,N分别为OA,BC的中点,且$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$用$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$表示$\overrightarrow{MN}$,则$\overrightarrow{MN}$=$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=cos$({x-\frac{π}{2}})$,g(x)=ex•f(x),其中e为自然对数的底数.
(1)求曲线y=g(x)在点(0,g(0))处的切线方程;
(2)若对任意$x∈[{\frac{π}{4},\frac{π}{2}}]$时,方程g(x)=xf(x)的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平行六面体ABCD-EFGH中,若$\overrightarrow{AG}$=2x$\overrightarrow{AB}$+3y$\overrightarrow{BC}$+3z$\overrightarrow{HD}$,则x+y+z等于(  )
A.$\frac{7}{6}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,若过F且倾斜角为$\frac{π}{3}$的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线x2-$\frac{y^2}{4}$=1交于A、B两点,若△ABF是等边三角形,则该抛物线焦点F的坐标为($\frac{\sqrt{6}}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,已知矩形ABCD与矩形ABEF全等,二面角DABE为直二面角,M为AB的中点,FM与BD所成的角为θ,且cos θ=$\frac{\sqrt{3}}{9}$,则$\frac{AB}{BC}$=(  )
A.1B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案