精英家教网 > 高中数学 > 题目详情
14.一菱形土地的面积为$\sqrt{3}$平方公里,菱形的最小角为60度,如果要将这一菱形土地向外扩张变成一正方形土地,问正方形土地边长最小为多少公里(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.2$\sqrt{6}$

分析 把菱形分割为两个等边三角形,则每个等边三角形的边长为2,高度为$\sqrt{3}$,正方形的对角线的长度也就是2$\sqrt{3}$,即可得出结论.

解答 解:把菱形分割为两个等边三角形,则每个等边三角形的边长为2,高度为$\sqrt{3}$,正方形的对角线的长度也就是2$\sqrt{3}$,所以边长为$\sqrt{6}$.
故选:C.

点评 本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知a>1,0<x<1,且${a}^{lo{g}_{b}(1-x)}$>1,那么b的取值范围是0<b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{c}x+\frac{3}{8},(0<x<c)}\\{{2}^{-8c},(c≤x<1)}}\end{array}\right.$,且满足f($\sqrt{c}$)=$\frac{1}{4}$.

(1)求常数c的值;

(2)解不等式f(x)>$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设m∈N*,已知函数f(x)=(2m-m2)•x${\;}^{2{m}^{2}+3m-4}$在(0,+∞)上是增函数.
(1)求函数f(x)的解析式;
(2)设g(x)=$\frac{[f(x)]^{2}+{λ}^{2}}{f(x)}$(λ≠0是常数),试讨论g(x)在(-∞,0)上的单调性,并求g(x)在区间(-∞,0)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)是这样定义的:对于任意整数m,当实数x满足不等式|x-m|<$\frac{1}{2}$时,有f(x)=m.
(1)求函数f(x)的定义域D,并画出它在x∈D∩[0,3]上的图象;
(2)若数列an=2+10•($\frac{2}{5}$)n,记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.a、b表示两条直线,α、β、γ表示三个平面,下列命题中错误的是(  )
A.a?α,b?α,且a∥β,b∥β,则α∥β
B.a、b是异面直线,则存在唯一的平面与a、b等距
C.a⊥α,b?β,a⊥b,则α∥β
D.α⊥γ,γ∥β,a⊥α,b⊥β,则a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各组函数是相等函数的是(  )
A.y=$\frac{|x|}{x}$与 y=1B.y=$\frac{{x}^{3}+x}{{x}^{2}+1}$与y=x
C.y=x与y=($\sqrt{x}$)2D.y=|x|与y=$\left\{\begin{array}{l}{x,x>1}\\{-x,x<1}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在正方体ABCD-A1B1C1D1的棱所在的直线中,与直线AB垂直的异面直线共有(  )
A.1条B.2条C.4条D.8条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若五个人排成一排,则甲乙两人之间仅有一人的概率是$\frac{3}{10}$.(结果用数值表示)

查看答案和解析>>

同步练习册答案