精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{c}x+\frac{3}{8},(0<x<c)}\\{{2}^{-8c},(c≤x<1)}}\end{array}\right.$,且满足f($\sqrt{c}$)=$\frac{1}{4}$.

(1)求常数c的值;

(2)解不等式f(x)>$\frac{1}{8}$.

分析 (1)先判断$\sqrt{c}$与c的大小,代值计算即可;
(2)根据x的范围,分段求出,得到不等式的解集.

解答 解:(1)∵0<c<1,
∴$\sqrt{c}$>c,又f($\sqrt{c}$)=$\frac{1}{4}$,
∴2-8c=$\frac{1}{4}$=2-2
解得c=$\frac{1}{4}$;
(2)由(1)知,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+\frac{3}{8},0<x<\frac{1}{4}}\\{\frac{1}{4},\frac{1}{4}≤x<1}\end{array}\right.$,
∵f(x)>$\frac{1}{8}$,
当0<x<$\frac{1}{4}$,$\frac{1}{2}$x+$\frac{3}{8}$>$\frac{1}{8}$,解得0<x<$\frac{1}{4}$,
当$\frac{1}{4}$≤x<1时,f(x)>$\frac{1}{8}$恒成立,
综上所述:不等式的解集为(0,1).

点评 本题考查指数型不等式的解法,考查分类讨论思想与方程思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=1,则f(2014)+f(2015)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下判断正确的是(  )
A.x>5是命题
B.命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题
D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.方程mx2-2(m+5)x+m+22=0的所有实根介于2与5之间(不包括2,5),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,若方程f(x)=m在区间[0,π]上有两个不同的数解x1、x2,则x1+x2的值为(  )
A.$\frac{π}{3}$B.$\frac{2}{3}π$C.$\frac{4}{3}π$D.$\frac{π}{3}$或$\frac{4}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点G是△ABC的重心,且AG⊥BG,若λ=$\frac{si{n}^{2}C}{cosCsinAsinB}$,则实数λ的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+2y2+$\frac{1}{2}$≤x(2y+1),则2x+log2y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一菱形土地的面积为$\sqrt{3}$平方公里,菱形的最小角为60度,如果要将这一菱形土地向外扩张变成一正方形土地,问正方形土地边长最小为多少公里(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数a∈[0,10],那么方程x2-ax+16=0有实数解的概率是$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案