精英家教网 > 高中数学 > 题目详情
10.已知点G是△ABC的重心,且AG⊥BG,若λ=$\frac{si{n}^{2}C}{cosCsinAsinB}$,则实数λ的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.3D.2

分析 首先根据三角形的重心性质及直角三角形的斜边的中线等于斜边的一半,得到CD=$\frac{3}{2}$AB,再应用余弦定理推出AC2+BC2=5AB2,然后运用正弦定理和余弦定理,结合已知条件,即可求出实数λ的值.

解答 解:如图,连接CG,延长交AB于D,
由于G为重心,故D为中点,
∵AG⊥BG,∴DG=$\frac{1}{2}$AB,
由重心的性质得,CD=3DG,即CD=$\frac{3}{2}$AB,
由余弦定理得,AC2=AD2+CD2-2AD•CD•cos∠ADC,
BC2=BD2+CD2-2BD•CD•cos∠BDC,
∵∠ADC+∠BDC=π,AD=BD,
∴AC2+BC2=2AD2+2CD2
∴AC2+BC2=$\frac{1}{2}$AB2+$\frac{9}{2}$AB2=5AB2
又∵λ=$\frac{si{n}^{2}C}{cosCsinAsinB}$=$\frac{A{B}^{2}}{BC•AC•cosC}$=$\frac{2A{B}^{2}}{B{C}^{2}+A{C}^{2}-A{B}^{2}}$=$\frac{2A{B}^{2}}{4A{B}^{2}}$=$\frac{1}{2}$.
故选:B.

点评 本题考查实数值的求法,考查了正弦、余弦定理,三角形的重心性质,熟练掌握定理及三角函数公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.f(x)是定义在(0,+∞)上的增函数,且f($\frac{x}{y}$)=f(x)-f(y).若f(2)=1,解关于x的不等式f(x+3)-f($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果圆(x+3)2+(y-1)2=1关于直线l:mx+4y-1=0对称,则直线l的斜率为(  )
A.4B.-4C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知cos($\frac{π}{3}$+α)=-$\frac{1}{3}$,则sin(α-$\frac{π}{6}$)的值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2\sqrt{3}}{3}$D.-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{c}x+\frac{3}{8},(0<x<c)}\\{{2}^{-8c},(c≤x<1)}}\end{array}\right.$,且满足f($\sqrt{c}$)=$\frac{1}{4}$.

(1)求常数c的值;

(2)解不等式f(x)>$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,BC=8$\sqrt{2}$,∠B=30°,∠C=45°,AD为∠BAC的平分线,则BD=16$\sqrt{2}$-16,DC=16-8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设m∈N*,已知函数f(x)=(2m-m2)•x${\;}^{2{m}^{2}+3m-4}$在(0,+∞)上是增函数.
(1)求函数f(x)的解析式;
(2)设g(x)=$\frac{[f(x)]^{2}+{λ}^{2}}{f(x)}$(λ≠0是常数),试讨论g(x)在(-∞,0)上的单调性,并求g(x)在区间(-∞,0)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.a、b表示两条直线,α、β、γ表示三个平面,下列命题中错误的是(  )
A.a?α,b?α,且a∥β,b∥β,则α∥β
B.a、b是异面直线,则存在唯一的平面与a、b等距
C.a⊥α,b?β,a⊥b,则α∥β
D.α⊥γ,γ∥β,a⊥α,b⊥β,则a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.点P(x0,y0)是圆C:x2+y2=1上的一个动点,过点P的直线l与圆C相切
(1)求证:直线l的方程为x0x+y0y=1;
(2)若直线l与x轴、y轴的交点分别为点A、B,且|PB|,|PA|,|AB|成等比数列,求点P的坐标.

查看答案和解析>>

同步练习册答案