分析 先求出五个人排成一排,基本事件总数,再求出甲乙两人之间仅有一人包含的基本事件个数,由此利用等可能事件概率计算公式能求出甲乙两人之间仅有一人的概率.
解答 解:五个人排成一排,基本事件总数n=${A}_{5}^{5}$=120,
甲乙两人之间仅有一人包含的基本事件个数m=${A}_{2}^{2}{C}_{3}^{1}{A}_{3}^{3}$=36,
∴甲乙两人之间仅有一人的概率p=$\frac{m}{n}$=$\frac{36}{120}$=$\frac{3}{10}$.
故答案为:$\frac{3}{10}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (e,+∞) | C. | (0,1)∪(1,+∞) | D. | (1,e)∪(e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$) | B. | f($\frac{π}{3}$)>2cos1•f(1) | C. | f($\frac{π}{4}$)<2cos1•f(1) | D. | f($\frac{π}{4}$)<$\frac{\sqrt{6}}{2}$f($\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com