分析 (1)由条件利用两个向量坐标形式的运算法则,求得向量2$\overrightarrow{a}$+$\overrightarrow{b}$的坐标.
(2)根据$\overrightarrow{a}$∥$\overrightarrow{b}$,求得sinθ的值,可得cosθ的值,从而利用两角和的正弦公式求得sin(2θ+$\frac{π}{4}$)的值.
解答 解:(1)因为$θ=\frac{π}{6}$,∴$\overrightarrow{a}$=$(1,\frac{1}{2})$,于是向量2$\overrightarrow{a}$+$\overrightarrow{b}$=$2(1,\frac{1}{2})+(3,1)=(5,2)$,
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$sinθ=\frac{1}{3}$,又因为$θ∈(0,\frac{π}{2})$,所以$cosθ=\frac{{2\sqrt{2}}}{3}$,
所以$sin(2θ+\frac{π}{4})=sin2θcos\frac{π}{4}+cos2θsin\frac{π}{4}=\frac{{8+7\sqrt{2}}}{18}$.
点评 本题主要考查两个向量坐标形式的运算,两个向量共线的性质,同角三角函数的基本关系,两角和的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 平均车速超过80km/h | 平均车速不超过80km/h | 合计 | |
| 男性驾驶员 | |||
| 女性驾驶员 | |||
| 合计 |
| P(K2≥k) | 0.1500 | 0.1000 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com