精英家教网 > 高中数学 > 题目详情

【题目】已知正四面体的棱长为 为棱的中点,过作其外接球的截面,则截面面积的最小值为__________

【答案】

【解析】将四面体放置于正方体中,可得正方体的外接球就是四面体的外接球,∵正四面体的棱长为,∴正方体的棱长为,可得外接球半径满足,解得 为棱的中点,过作其外接球的截面,当截面到球心的距离最大时,截面圆的面积达最小值,此时球心到截面的距离等于正方体棱长的一半,可得截面圆的半径为,得到截面圆的面积最小值为

点睛:空间几何体与球接、切问题的求解方法

(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,且(2bc)cos Aacos C

(1)求角A的大小;

(2)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,斜率为的直线与椭圆交于 两点,点在直线的左上方.若,且直线 分别与轴交于 点,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).

(1)分别写出两种产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(1+x)+lg(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( t+1 , ( t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场分析,某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.

(1)写出月总成本(万元)关于月产量(吨)的函数关系;

(2)已知该产品的销售价为每吨1.6万元,那么月产量为多少时,可获最大利润.

(3)当月产量为多少吨时,每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

同步练习册答案